\qquad

Kinetics Unit Activity - Chemical Kinetics II KEY

The purpose of this activity is to develop concepts of chemical kinetics: Specifically to deepen your understanding and familiarity with some integrated rate equations.

Complete the following table for the reactions in which the rate law depends on the concentration of A for the following:

	0 order	$\mathbf{1}^{\text {st }}$ order	2 $^{\text {nd }}$ order
Rate law	Rate $=\mathrm{k}$	Rate $=\mathrm{k}[\mathrm{A}]$	Rate $=\mathrm{k}[\mathrm{A}]^{2}$
Integrated rate	$[\mathrm{A}]=[\mathrm{A}]_{0}-\mathrm{kt}$	$[\mathrm{A}]_{\mathrm{t}}=[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{kt}}$ $\ln [\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+\ln [\mathrm{A}]_{0}$	$4.762=\left(2.36 \times 10^{-2}\right) \mathrm{t}$
Half life	$t_{1 / 2}=\frac{[A]_{0}}{2 k}$	$t_{1 / 2}=\frac{\ln (2)}{k}$	$t_{1 / 2}=\frac{1}{k[A]_{0}}$

	0 order	$1{ }^{\text {st }}$ order	$2^{\text {nd }}$ order
Plot to determine the order of a reaction. Determine what should be plotted on the y-axis for each type of rate law. Time will be on the x - axis for each. Sketch the plot that gives the straight line, and indicates the order of the rate law.	[A] vs. t	$\ln [\mathrm{A}]$ vs. t	$\frac{1}{[\mathrm{~A}]} \text { vs. } \mathrm{t}$
Slope of line plotted will equal what?	-k	-k	k

[A] vs. t

\qquad

1. The decomposition of $\mathrm{N}_{2} \mathrm{O}$ follows first-order kinetics. This means

$$
\mathrm{N}_{2} \mathrm{O}(g) \rightarrow \mathrm{N}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)
$$

(the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}$) $=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}\right.$]
If an initial sample has a concentration of 0.20 M , what is the concentration after 100 ms given the rate constant for this reaction is $\mathrm{k}=3.4 \mathrm{~s}^{-1}$ (at $780^{\circ} \mathrm{C}$)?
$[\mathrm{A}](\mathrm{t})=[\mathrm{A}] \mathrm{e}^{-\mathrm{kt}}$
$[\mathrm{A}]=(0.2 \mathrm{M}) \mathrm{e}^{-(3.4)(0.1)}$
$[\mathrm{A}]=0.14 \mathrm{M}$
2. Using the following data decide if the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is first order. How would you determine the value of the rate constant, k , from this data?

$\mathrm{T}(\min)$	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}(\mathrm{M})$	$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}$
0	15×10^{-3}	-4.2
200	9.6×10^{-3}	-4.6
400	6.2×10^{-3}	-5.1
600	4.0×10^{-3}	-5.5
800	2.5×10^{-3}	-6.0
1000	1.6×10^{-3}	-6.4

\qquad

If we plot the natural \log of $\mathrm{N}_{2} \mathrm{O}_{5}$ against time, a fairly linear relationship is observed. Therefore, we can conclude that this is a first order reaction. We could determine k by finding the slope of this linear relationship and multiplying it by negative one.
3. How long will it take for the concentration of " A " to decrease to 1.0% of its initial value in a first order reaction of the form $\mathrm{A} \rightarrow$ products with $\mathrm{k}=1.0 \mathrm{~s}^{-1}$?
Let's say that I have 100 kg of A. After a certain amount of time I will be left with 1% of 100 kg or 1 kg .
OR rearrange to put $[\mathrm{A}]$ over $[\mathrm{A}]_{0}$ such that you can use a ratio of the two concentrations
Then...
$[\mathrm{A}]_{\mathrm{t}}=[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{kt}}$

$$
\begin{aligned}
& \frac{[\mathrm{A}]}{[\mathrm{A}]_{0}}=\mathrm{e}^{-\mathrm{kt}} \\
& \frac{1}{100}=0.01=\mathrm{e}^{-(1.0) \mathrm{t}} \\
& \ln (0.01)=-\mathrm{t} \\
& 4.6 \mathrm{~s}=\mathrm{t}
\end{aligned}
$$

4. Pu-239 has a half-life of 24,000 years. It is a by-product of nuclear power plants. How many years must pass before the radioactivity drops to 30% of its initial value.
Half-lives are first order kinetics, so we can use first-order concepts to help us. Before we can jump into the integrated rate law, we need to find the value of k.
$\mathrm{t}_{1 / 2}=\frac{\ln (2)}{\mathrm{k}}$
$24000=\frac{\ln (2)}{\mathrm{k}}$
\qquad
$\mathrm{k}=2.888 \times 10^{-5}$
Now we can use the first-order rate law to find time, t. Let's say that I have 100 g of Pu239. After a certain amount of time I will be left with 30% of 100 g or 30 g . OR rearrange to put [Pu] over [Pu]o such that you can use a ratio of the two concentrations
$[\mathrm{A}](\mathrm{t})=[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{kt}}$
$\frac{[\mathrm{A}]}{[\mathrm{A}]_{0}} \mathrm{o}=\mathrm{e}^{-\mathrm{kt}}$
$\frac{30}{100}=0.3=\mathrm{e}^{-(2.888 \times 10-5) \mathrm{t}}$
$\ln (0.3)=-2.888 \times 10^{-5 t}$
$t=41687$ years
5. A particular reaction is second order with respect to a reactant A (and zeroth order with respect to all other reactants). The rate constant for this reaction is $\mathrm{k}=2.36 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Given the initial concentration of $\mathrm{A},[\mathrm{A}]_{0}=0.84 \mathrm{M}$, calculate the time needed for the concentration of A to decrease to 20% of its original value.
Now we have a defined starting amount, so we no longer have to imagine that we have 100 g or 100 kg of the substance. We can find 20% of 0.84 M by multiplying 0.84 M by 0.2. After a certain amount of time the concentration of A would reach 20% of 0.84 M or 0.168 M.

$$
\begin{aligned}
& \frac{1}{[\mathrm{~A}]}=\frac{1}{[\mathrm{~A}]_{0}}+\mathrm{kt} \\
& \frac{1}{0.168}=\frac{1}{0.84}+\left(2.36 \times 10^{-2}\right) \mathrm{t} \\
& \frac{1}{0.168}-\frac{1}{0.84}=\left(2.36 \times 10^{-2}\right) \mathrm{t} \\
& 4.762=\left(2.36 \times 10^{-2}\right) \mathrm{t} \\
& 201.8 \text { seconds }=\mathrm{t}
\end{aligned}
$$

