

Kinetics Unit Activity – Chemical Kinetics II KEY

The purpose of this activity is to develop concepts of chemical kinetics: Specifically to deepen your understanding and familiarity with some integrated rate equations.

Complete the following table for the reactions in which the rate law depends on the concentration of A for the following:

	0 order	1 st order	2 nd order
Rate law	Rate = k	Rate = k[A]	Rate = $k[A]^2$
Integrated rate	$[A] = [A]_0$ -kt	$[A]_t = [A]_0 e^{-kt}$ $ln[A]_t = -kt + ln[A]_0$	$4.762 = (2.36 \times 10^{-2})t$
Half life	$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{\ln(2)}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$

	0 order	1 st order	2 nd order
Plot to determine the		ln[A] vs. t	1
order of a reaction.	[A] vs. t		$\left[\frac{1}{[A]}\right]$ VS. t
Determine what			
should be plotted on			
the y-axis for each			
type of rate law.			
Time will be on the			
x- axis for each.			
Sketch the plot that			
gives the straight			
line, and indicates			
the order of the rate			
law.			
Slope of line plotted	-k	-k	k
will equal what?			

1. The decomposition of N_2O follows first-order kinetics. This means

$$N_2O(g) \rightarrow N_2(g) + \frac{1}{2}O_2(g)$$

(the rate of decomposition of N_2O) = k[N_2O]

If an initial sample has a concentration of 0.20 M, what is the concentration after 100 ms given the rate constant for this reaction is $k = 3.4 \text{ s}^{-1}$ (at 780°C)? [A](t) = [A]_0e^{-kt}

$$[A] = (0.2M)e^{-(3.4)(0.1)}$$
$$[A] = 0.14 M$$

2. Using the following data decide if the decomposition of N_2O_5 is first order. How would you determine the value of the rate constant, k, from this data?

T(min)	$[N_2O_5]_t$ (M)	$ln[N_2O_5]_t$
0	15 x 10 ⁻³	-4.2
200	9.6 x 10 ⁻³	-4.6
400	6.2 x 10 ⁻³	-5.1
600	4.0 x 10 ⁻³	-5.5
800	2.5 x 10 ⁻³	-6.0
1000	1.6 x 10 ⁻³	-6.4

Name:_

If we plot the natural log of N_2O_5 against time, a fairly linear relationship is observed. Therefore, we can conclude that this is a first order reaction. We could determine k by finding the slope of this linear relationship and multiplying it by negative one.

3. How long will it take for the concentration of "A" to decrease to 1.0 % of its initial value in a first order reaction of the form A→ products with k = 1.0 s⁻¹?
 Let's say that I have 100 kg of A. After a certain amount of time I will be left with 1% of

100 kg or 1 kg. OR rearrange to put [A] over $[A]_0$ such that you can use a ratio of the two concentrations

$$[A]_{t} = [A]_{0}e^{-kt}$$

$$\frac{[A]}{[A]_{0}} = e^{-kt}$$

$$\frac{1}{100} = 0.01 = e^{-(1.0)t}$$

$$\ln(0.01) = -t$$

$$4.6 \text{ s} = t$$

4. Pu-239 has a half-life of 24, 000 years. It is a by-product of nuclear power plants. How many years must pass before the radioactivity drops to 30 % of its initial value.

Half-lives are first order kinetics, so we can use first-order concepts to help us. Before we can jump into the integrated rate law, we need to find the value of k.

$$t_{1/2} = \frac{\ln(2)}{k}$$

24000 = $\frac{\ln(2)}{k}$

Name:____

 $k = 2.888 \times 10^{-5}$

Now we can use the first-order rate law to find time, t. Let's say that I have 100 g of Pu-239. After a certain amount of time I will be left with 30% of 100 g or 30 g. OR rearrange to put [Pu] over [Pu]₀ such that you can use a ratio of the two concentrations

 $[A](t) = [A]_0 e^{-kt}$ $\frac{[A]}{[A]_0} o = e^{-kt}$ $\frac{30}{100} = 0.3 = e^{-(2.888 \times 10^{-5})t}$ $\ln(0.3) = -2.888 \times 10^{-5}t$ t = 41687 years

5. A particular reaction is second order with respect to a reactant A (and zeroth order with respect to all other reactants). The rate constant for this reaction is $k=2.36 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$. Given the initial concentration of A, $[A]_0 = 0.84 \text{ M}$, calculate the time needed for the concentration of A to decrease to 20 % of its original value.

Now we have a defined starting amount, so we no longer have to imagine that we have 100g or 100kg of the substance. We can find 20% of 0.84 M by multiplying 0.84 M by 0.2. After a certain amount of time the concentration of A would reach 20% of 0.84 M or 0.168 M.

$$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$$

$$\frac{1}{0.168} = \frac{1}{0.84} + (2.36 \times 10^{-2})t$$

$$\frac{1}{0.168} - \frac{1}{0.84} = (2.36 \times 10^{-2})t$$
4.762 = (2.36 \times 10^{-2})t
201.8 seconds = t