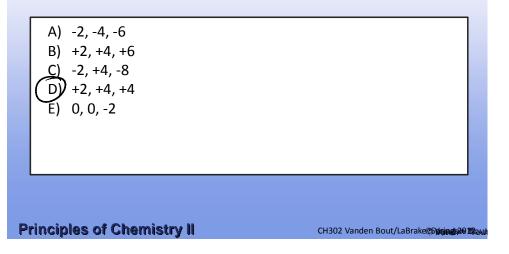
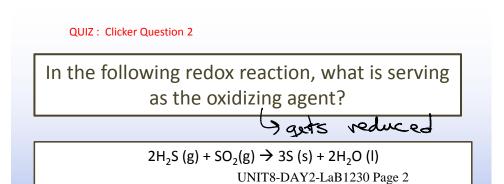
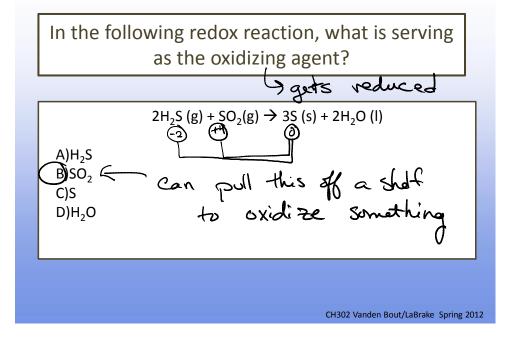

UNIT8-DAY2-LaB1230

Monday, April 15, 2013 3:52 PM

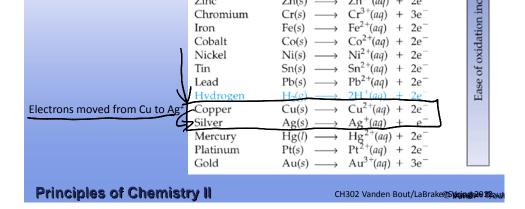

	IMPORTANT INFORMATION	
[LM34 & LM35 due The 9 AM	
	Exam Average 😊	
F	Relox Worksheet Coming Soon	
	Relox Worksheet Coming Soon Balancing, etc	
	5	
	CH302 Vanden Bout/LaBrake Spring 2012	

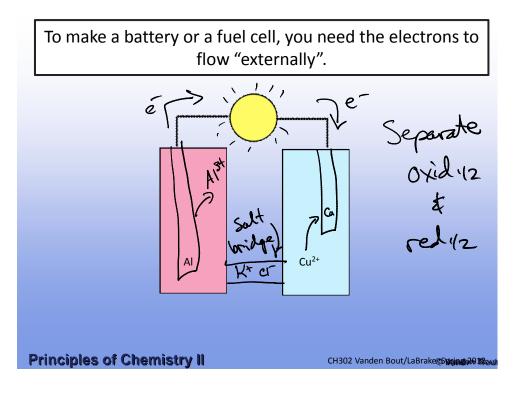

UNIT8-DAY2-LaB1230 Page 1

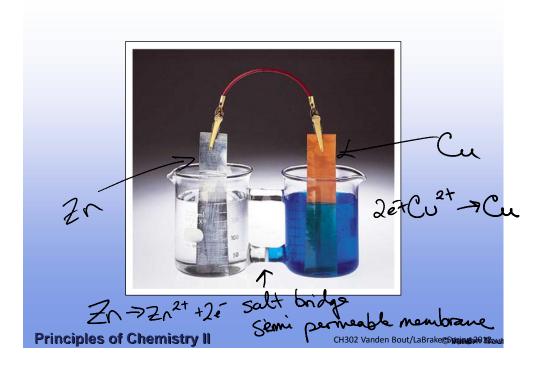


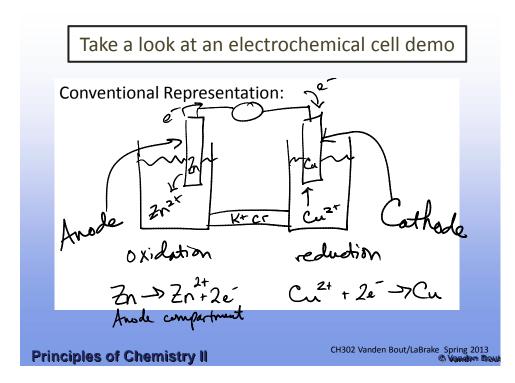
QUIZ: Clicker Question 1

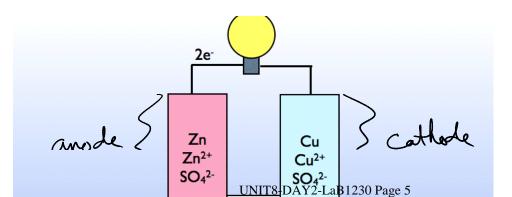
The oxidation numbers on the C in the following oxides, CO, CO_2 and CO_3^{2-} are:

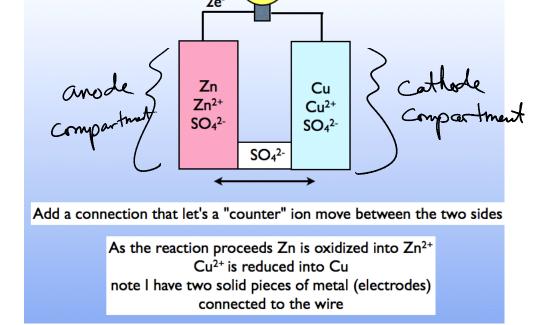


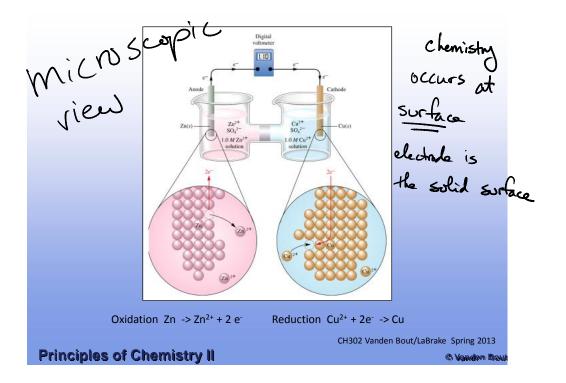


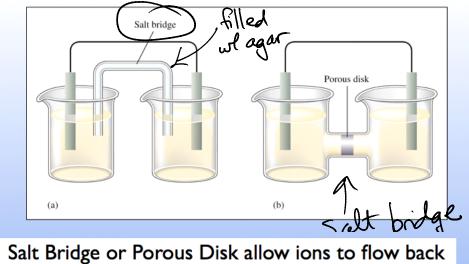


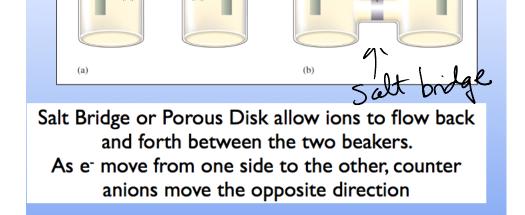

Sometimes it is NOT EASY to make ½ reactions $\begin{array}{l} \bigotimes_{Na(s)} + (H_{2} \bigcirc (H) \rightarrow (H_{2} \bigcirc (H) + (H_{2} \bigcirc (H)) \\ \bigotimes_{Na(s)} + (H_{2} \bigcirc (H) \rightarrow (H_{2} \bigcirc (H_{2} \rightarrow (H_{2} + (H_{2} \bigcirc (H_{2} \rightarrow (H_{2} \rightarrow$

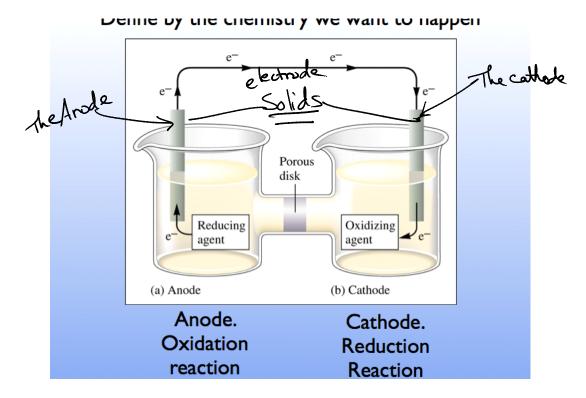

	Metal	Oxidation Reaction
Last class we noticed	Lithium	$Li(s) \longrightarrow Li^+(aq) + e^-$
electrons will move from	Potassium	$K(s) \longrightarrow K^+(aq) + e^-$
higher energy to lower	Barium	$Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$
nigher energy to lower	Calcium	$Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$
energy	Sodium	$Na(s) \longrightarrow Na^+(aq) + e^-$
0/	Magnesium	$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$
Electrons moved from Al to Cu ²⁺	Aluminum	$Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$
	Manganese	$Mn(s) \longrightarrow Mn^{2+}(aq) + 2e$
	Zinc	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$
	Chromium	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	Iron	$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$
	Cobalt	$Co(s) \longrightarrow Co^{2+}(aq) + 2e^{-}$
	Nickel	$Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-}$
	Tin	$Sn(s) \longrightarrow Sn^{2+}(aq) + 2e^{-}$
	Lead	$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$
D d	Hydrogen	
Electrons moved from Cu to Ag ⁺	Copper	$Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$
	Silver	$Ag(s) \longrightarrow Ag^+(aq) + e^-$
	Mercury UNI	T84DAY2-LaB4230@age23

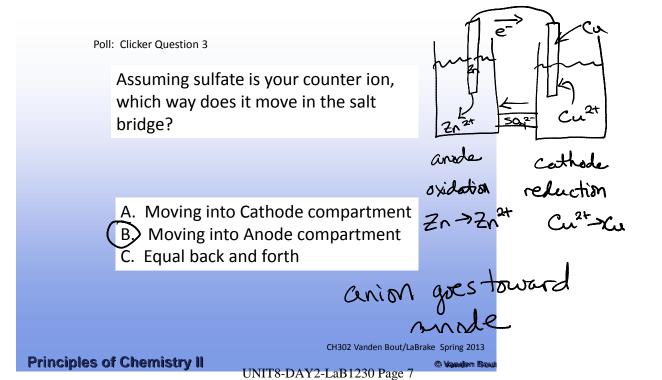


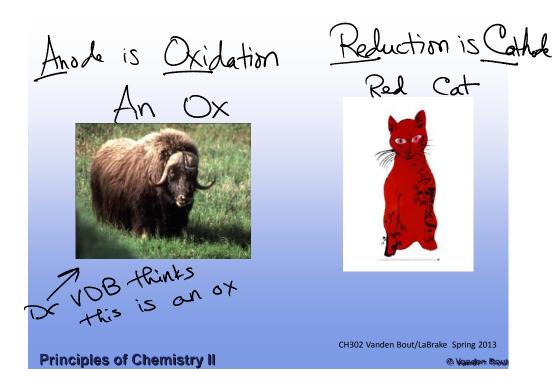


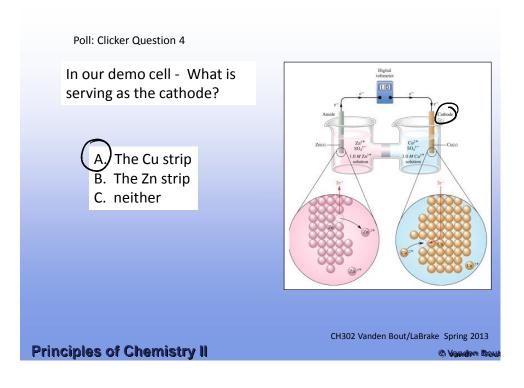


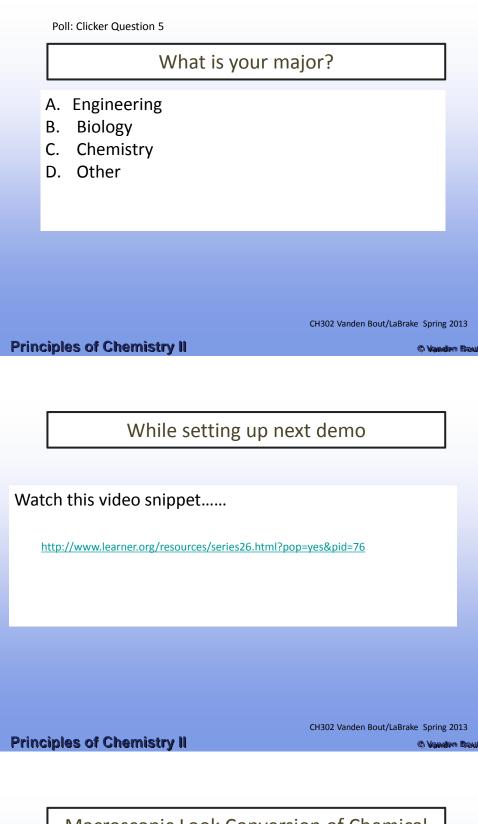


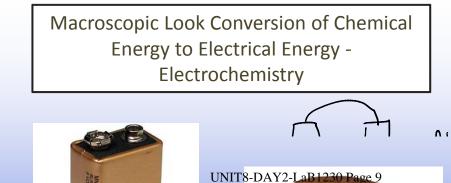


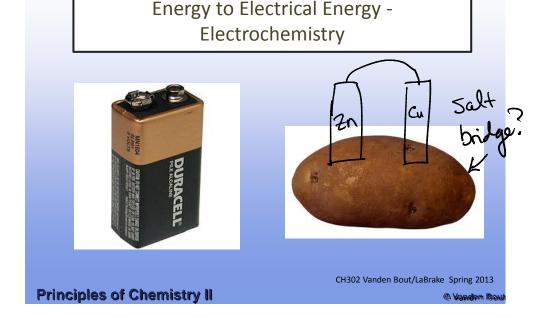


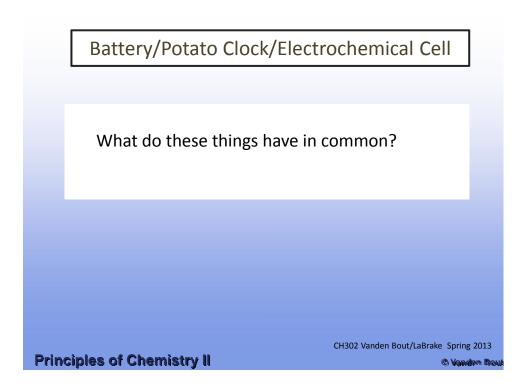


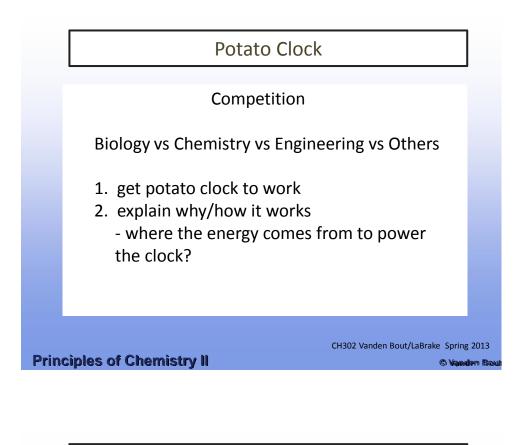

- D. Wowing into Anoue compartment
- C. Equal back and forth

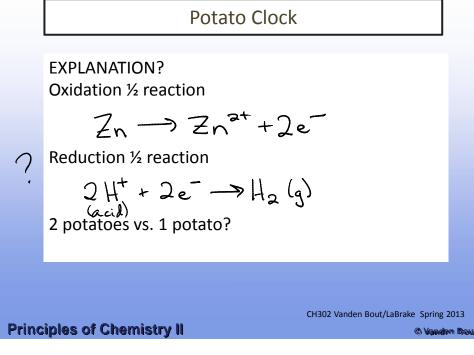

anion goes rowarca CH302 Vanden Bout/LaBrake Spring 2013

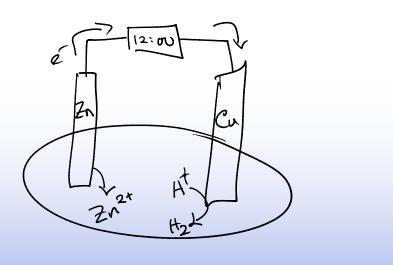

© Vanden Bou


Principles of Chemistry II

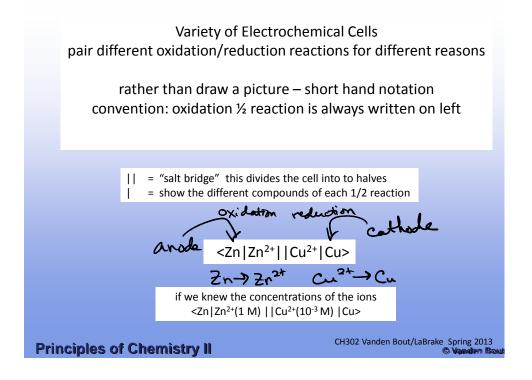


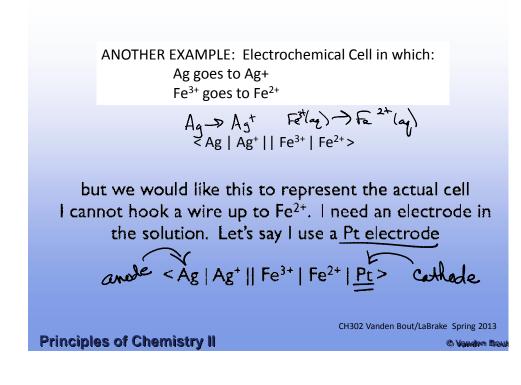






	Metal	Oxidation Reaction
Use the chart to explain the	Lithium	$Li(s) \longrightarrow Li^+(aq) + e^-$
Potato clock:	Potassium	$K(s) \longrightarrow K^+(aq) + e^-$
	Barium	$Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$
Movement of electrons and	Calcium	$Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$
What is acting as anode and	Sodium	$Na(s) \longrightarrow Na^+(aq) + e^-$
What is acting as a cathode.	Magnesium	$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$
-	Aluminum	Al(s) \longrightarrow Al ³⁺ (aq) + 3e ⁻
	Manganese	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Zinc	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$
	Chromium	$Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$
	Iron	$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$
	Cobalt	$Co(s) \longrightarrow Co^{2+}(aq) + 2e^{-}$
Int C	Nickel	$Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-}$
	Tin	$Sn(s) \longrightarrow Sn^{2+}(aq) + 2e^{-}$
	Lead	$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$
	<u>Hvdrogen</u>	
ascorbic I	Copper	$Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$
au	Silver	$Ag(s) \longrightarrow Ag^+(aq) + e^-$
	Mercury	$Hg(l) \longrightarrow Hg^{2+}(aq) + 2e^{-}$
	Platinum	$Pt(s) \longrightarrow Pt^{2+}(aq) + 2e^{-}$
	Gold	$Au(s) \longrightarrow Au^{3+}(aq) + 3e^{-}$


Principles of Chemistry II

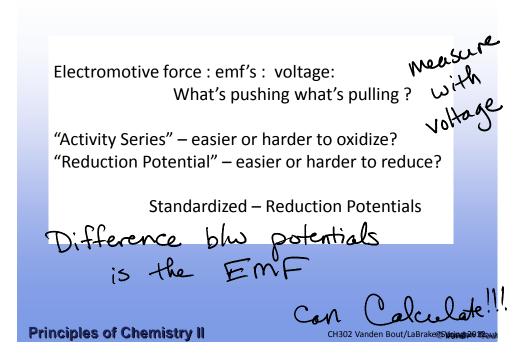

CH302 Vanden Bout/LaBrake Spring 2013 © Vanden Boy

Principles of Chemistry II

CH302 Vanden Bout/LaBrake

Shorthand IS NOT ANOTHER EXAMPLE: Potato Clock Cell? Holonced < Zn | Zn^{2t} || H⁺ | H₂ | Cu > What goes in the blab \$78-DAY2-LaB1230 Page 13

ANOTHER EXAMPLE: Potato Clock Cell? bolonced < Zn | Zn^{2t} || H⁺ | H₂ | Cu > anode Oxidation reduction to cothode (notal) what goes in the blanks? A)Zn, Zn²⁺, Cu²⁺, Cu, extra needs to be deleted B)Zn²⁺, Zn, Cu, Cu²⁺, extra needs to be deleted CZn, Zn²⁺, H⁺, H₂, Cu D)Zn, Zn²⁺, Cu²⁺, Cu, H⁺, H₂ E)Zn, Zn²⁺, H₂, H⁺, Cu **Principles of Chemistry II** CH302 Vanden Bout/LaBrakecs Vinge 2018


	<zn < th=""><th> Zn²⁺ Cu²⁺ Cu></th><th></th></zn <>	Zn ²⁺ Cu ²⁺ Cu>	
	ONE CELL	TWO CELLS	
	\sim 1.1 V	~1.6V NOW	
		~2.2 @ 7:450	sw
	A	Batteries die	
	[Zn2t] 1	Assume IM	
	$\left[C_{2}^{2+} \right] \sqrt{2}$	E°= E°Red - E°ox	
		$E^{\circ} = 0.34 - (-0.76)$ = ~ $. V$	
	Principles of Chemistry II	CH302 Vanden Bout/LaBrake@Strange	20 13 041
	Standard Reduc	ction Potentials	
h	Half-reaction	€° (V) Half-reaction €° (V)	
·	$F_2 + 2e^- \rightarrow 2F^-$	$2.87 \qquad O_2 + 2H_2O + 4e^- \rightarrow 4OH^- \qquad 0.40$	0.0

O Like	Flatt-reaction	e (v)	Half-reaction	• (v)	
Reduce	$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O_2 + 4e^- \rightarrow 4OH^-$	0.40	
	$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} \pm 2e^- \rightarrow Cu$	0.34	
OA SEA	$Co^{3+} + e^- \rightarrow Co^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27	
	$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78	$AgCl + e^- \rightarrow Ag + Cl^-$	0.22	
	$Ce^{4+} + e^- \rightarrow Ce^{3+}$	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20	
	$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^- \rightarrow Cu^+$	0.16	0
	$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00	when
	$IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$	1.60	$Fe^{3+} + 3e^- \rightarrow Fe$	-0.036	
	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13	
	$Au^{3+} + 3e^- \rightarrow Au$	1.50	$\operatorname{Sn}^{2+} + 2e^- \rightarrow \operatorname{Sn}$	-0.14	
	$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23	
	$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35	
	$Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_{2}O$	1.33	$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40	
	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44	
	$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50	
	$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73	
	$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{*} + 2e^{-} \rightarrow Zn$	-0.76	
	$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83	
	$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18	
	$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^- \rightarrow Al$	-1.66	
	$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23	
	$2Hg^{2+} + 2e^- \rightarrow Hg_2^{2+}$	0.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37	
	$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^- \rightarrow La^-$	-2.37	
	$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71	
	$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^- \rightarrow Ca$	-2.76	
	$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.90	
	$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	PPNIT	8-DAY2-LaB1230 Page 14	-2.92	
	1	6 FAILT	o prinz Eupreso nugo n	2.05	

$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^- \rightarrow Al$	-1.66
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$2Hg^{2+} + 2e^- \rightarrow Hg_2^{2+}$	0.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37
$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^- \rightarrow La$	-2.37
$Hg_2^{2^+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^- \rightarrow Ca$	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	0.56	$K^+ + e^- \rightarrow K$	-2.92
$l_2 + 2e^- \rightarrow 2l^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05
$Cu^+ + e^- \rightarrow Cu$	0.52	(redu	cen worst asses
		-	

CH302 Vanden Bout/LaBrake@Sycingle2012

Principles of Chemistry II

Write a cell reaction for a cell diagram

- 1. Write the equation for the electrode on the right of the cell as a reduction $\frac{1}{2}$ -reaction.
- 2. Write the equation for the electrode on the left of the cell diagram as an oxidation ½-reaction.
- **3.** Multiply one or both equations by a factor if necessary to balance the electron transfer then add the two ½-reactions together.

Write the chemical equation for the reaction corresponding to the cell: Pt(s)

$$H_2(g)|H^+(aq)||Co^{3+}(aq),Co^{2+}(aq)|Pt(s)|$$

Then, referring to table, calculate the standard cell potential, E.

Principles of Chemistry II

Principles of Chemistry II

CH302 Vanden Bout/LaBrake@Staingla@12000

Learning Outcomes

Recognize degrees of reactivity based on an activity series table or a standard reduction potential table.

Apply standard reduction potential data to determine the relative strength of oxidizing/reducing agents.

Construct an electrochemical cell diagram, including identifying the anode, cathode, direction of electron flow, sign of the electrodes, direction of ion flow in salt bridge, from a redox reaction or from short hand cell notation.

CH302 Vanden Bout/LaBrake Spring 2012