UNIT8-DAY1-LaB11am

Wednesday, April 10, 2013 7:15 PM

UNIT8-DAY1-LaB11am Page 1

What are we going to learn today?

Oxidation – Reduction Chemistry Introduction (Redox Chemistry)

Tracking the movement of electrons

Principles of Chemistry II

CH302 Vanden Bout/LaBrake Spring 2013

Poll: Clicker Question 1

Studying chemistry with other students outside of class is helping me learn the material.

IF you do NOT study with a group outside of class, select A

A) Not Applicable

If you DO study with a group outside of class, indicate how true the statement is of you

- B) NOT True of me at all
- C) Somewhat NOT True of me
- D) Somewhat true of me
- E) Very True of Me

CH302 Vanden Bout/LaBrake Spring 2012

How study groups matters...

When 2 or more students engage in a common task, working jointly to solve the problem or develop understanding

- Students who learn via collaboration (study groups) or peer tutoring outperformed those learning individually.
- Exposes you to different perspective and negotiate with one another to achieve mutual understanding.
- Those students who engaged in constructive dialogue were found to retain their knowledge longer.
 (Ding & Harskamp, 2011)

CH302 Vanden Bout/LaBrake Spring 2012

UNIT8-DAY1-LaB11am Page 4

Poll: Clicker Question 5

What is the equilibrium constant?

Could you have predicted which of the reactions favor reactants and which favor products?

What about one that we didn't do... silver + aluminum ion? $\Delta G \prec K$ Pan measure

SGZK SG=-RTAK

Principles of Chemistry II

CH302 Vanden Bout/Larake@Spaingla@1200

A INT.

Henny	ry Jer	ies	for S	Predictin	٩	change
Metal	Oxidation R	eaction	1		Q	
Lithium	$Li(s) \longrightarrow$	$\mathrm{Li}^+(aq)$	+ e ⁻	\wedge		idation
Potassium	$K(s) \longrightarrow$	$K^+(aq)$	+ e ⁻			0100
Barium	$Ba(s) \longrightarrow$	$Ba^{2+}(aq)$	$+ 2e^-$, le
Calcium	$Ca(s) \longrightarrow$	$Ca^{2+}(aq)$	$+ 2e^{-}$			1055 9
Sodium	$Na(s) \longrightarrow$	$Na^+(aq)$	$+ e^{-}$			v
Magnesium	$Mg(s) \longrightarrow$	$Mg^{2+}(aq)$	$+ 2e^{-}$			
Aluminum	$Al(s) \longrightarrow$	$Al^{3+}(aq)$	$+ 3e^{-}$	s		$h \sim h$
Manganese	$Mn(s) \longrightarrow$	$Mn^{2+}(aq)$	$+ 2e^{-}$	eas		24 5.1
Zinc	$Zn(s) \longrightarrow$	$Zn^{2+}(aq)$	$+ 2e^{-}$	Đ Đ		I to Ital
Chromium	$Cr(s) \longrightarrow$	$Cr^{3+}(aq)$	$+ 3e^{-}$	л.		10 084
Iron	$Fe(s) \longrightarrow$	$Fe^{2+}(aq)$	$+ 2e^{-}$	ioi		
Cobalt	$Co(s) \longrightarrow$	$Co^{2+}(aq)$	$+ 2e^{-}$	dat		
Nickel	$Ni(s) \longrightarrow$	$Ni^{2+}(aq)$	$+ 2e^{-}$	Xi.		•
Tin	$Sn(s) \longrightarrow$	$\operatorname{Sn}^{2+}(aq)$	$+ 2e^{-}$	of c		
Lead	$Pb(s) \longrightarrow$	$Pb^{2+}(aq)$	$^{+}_{1}$ $^{2e^{-}_{1}}_{2e^{-}_{1}}$	1	-	
Hydrogen	$H_{(2)} = UN$	118-DA 1	ц-гавт	ram Page	1	

Use a model to show the separation of the redox reaction: 0×10^{12} 2Al (s) + $3Cu^{2+}(aq) \rightarrow 3Cu(s) + 2Al^{3+}(aq) AT$ That is, write the oxidation ½ reaction and the reduction ½ reaction 2^{2+} $(A |_{G} \rightarrow A |_{G}^{3+} + 3e^{-}) 2 Bolowee (A |_{G}^{3+}) A |_{G}^{3+} + 3e$ **Principles of Chemistry II** CH302 Vanden Bout/LaBrake@Sysingla@180

 KEEP IT STRAIGHT
 OXidizing agent.

 OXIDATION IS WHEN ATOM LOSES ELECTRONS:
 > undergoes reluction

 REDUCTION IS WHEN ATOM GAINS ELECTRONS:
 Reducing agent.

 OXIDATION IS WHEN ATOM GAINS ELECTRONS:
 Oxidizing agent.

OILRIG D'Xidation is Loss Reduction is Gain LEO says GER Lose e Oxidation, Gain e Reduction Just Remember It: Gain, Reduction, Oxidation Loss x. Vanden Bort **Principles of Chemistry II** CH302 Vanden Bout/LaBrake@Sweingla@1800

UNIT8-DAY1-LaB11am Page 11

Oxidation Numbers

- 1. The oxidation # of an uncombined element is 0.
- 2. The sum of the oxidation *#*'s of all the atoms in a species is equal to its total charge.
- 3. The oxidation # of H is +1 in combination with nonmetals and -1 in combination with metals.
- 4. The oxidation #'s of elements in Groups 1 and 2 is equal to their group number.
- 5. The oxidation *#* of the halogens is -1, unless it is in combination with oxygen or another halogen higher in the group. The oxidation number of fluorine is 1 in all its compounds.
- 6. The oxidation # of oxygen is -2 in most of its compounds. Exceptions are with fluorine, and as peroxide or superoxide.

Example: Assign oxidation numbers to SO₂ and SO₄²⁻ and P₄O₆ and KMnO₄

Learning Outcomes

Identify an oxidation – reduction (redox) reaction based on changes in oxidation numbers across the chemical change.

Identify oxidizing/reducing agents in chemical reaction.

Balance a net redox reaction using the ½ reaction method in acidic or basic solution.

Recognize degrees of reactivity based on an activity series table or a standard reduction potential table.

Apply standard reduction potential data to determine the relative strength of oxidizing/reducing agents

Principles of Chemistry II

CH302 Vanden Bout/LaBrake Spring 2013