Thinking Like a

 Chemist About Kinetics II
UNIT7 DAY5

What are we going to learn today?
\square
Investigating Integrated Rate Law

HW9 due Tue 9 AM
LM 29 .. Question was Killed

Quiz: Clicker Question 1

The rate constant for a mystery reaction is $4.5 \times 10^{-2} \mathrm{M} \mathrm{s}^{-1}$ By what order does this reaction proceed?
(a) 0 order
b) $1^{\text {st }}$ order
c) $2^{\text {nd }}$ order
d) $3^{\text {rd }}$ order

Kinetics - Review from Last time

Imagine the following reaction occurring in one elementary step:

$$
\mathrm{CH}_{3} \mathrm{Br}+\mathrm{OH}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Br}^{-}
$$

$$
\begin{gathered}
\text { Macroscopic } \\
\frac{-\Delta\left[\mathrm{CH}_{3} \mathrm{Br}\right]}{\Delta \mathrm{t}}=\frac{-\mathrm{d}\left[\mathrm{CH}_{3} \mathrm{Br}\right]}{\mathrm{dt}}=\text { RATE }=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{Br}\right]^{x}\left[\mathrm{OH}^{-}\right]^{y}
\end{gathered}
$$

Measured in lab

Integrated rate laws
(the concentration as a function of time)
We need a situation in which either

1. The rate law depends on only one reactant
2)平. Only one reactant is changing much in

 so effectively only one concentration is changing

Principles of Chemistry II

First order.
Integrated Rate Law \square

The rate of the reaction is directly proportional to the concentration of one of reactant

For a generic reaction let's call that reactant " A "

$$
\frac{-\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{RATE}=\mathrm{k}[\mathrm{~A}]
$$

Integrated Rate Law

First order.

$$
\begin{aligned}
y & =m x+b \\
\ln [A] & =-k t+\ln [A]_{0}
\end{aligned}
$$

Integrated Rate Law

Half
Life: $\mathrm{t}_{1 / 2}=\frac{\ln (2)}{k} \quad \ln \frac{[A]_{t}}{[A]_{0}}=-k t$
Rearrange
CH302 Vanden Bout/LaBrake Spring 2013

TABLE 15．6 Summary of the Kinetics for Reactions of the Type $a \mathrm{~A} \longrightarrow$ Products That Are Zero，First，or Second Order in［A］

Principles of Chemistry II

Poll：Clicker Question 2

Refer to Activity Q1．What is the concentration of $\mathrm{N}_{2} \mathrm{O}$ after 100 ms ？
a） 0.34 M
b） 0.24 M
c） 0.14 M
d）I have not mastered this skill and cannot get the answer without help．

Poll：Clicker Question 3

Refer to Activity Q2：The value of the k could be determined：
a）By using this data in the rate law equation applying the method of initial rates and solving for k
b）By taking the natural log of all the values and then taking the difference between natural log and concentration at time， t
c）By determining the slope of the line from a plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus time．
d）By determining the slope of the line from a plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus time．The value of k unputd be the quppositite oft
a) By using this data in the rate law equation applying the method of initial rates and solving for k
b) By taking the natural log of all the values and then taking the difference between natural log and concentration at time, t
c) By determining the slope of the line from a plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus time.
d) By determining the slope of the line from a plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus time. The value of k would be the opposite of the slope.

Poll: Clicker Question 4

Refer to Activity Q3: How long will it take A to decrease to 1\% of starting amount?
a) 0 seconds
bi) 5 seconds
c) 100 seconds
d) I have not mastered this skill enough to figure out how to work this problem.

Poll: Clicker Question 5

Refer to Activity Q4: How many years will it take the isotope to drop to 30% of original amounts?
a) $24,000 \mathrm{yrs}$
b) $36,200 \mathrm{yrs}$
c) $41,660 \mathrm{yrs}$
d) $43,580 \mathrm{yrs}$
e) $48,000 \mathrm{yrs}$

Poll: Clicker Question 6

Refer to Activity Q5: How much time passes to reduce starting concentration to 20% of original amount?
a)41 seconds
b) 82 seconds
c) 160 seconds
d) 202 seconds

Refer to Activity Q5: How much time passes to reduce starting concentration to 20% of original amount?
a) 41 seconds
b) 82 seconds
c) 160 seconds

d) 202 seconds
e) I have not mastered this skill enough to solve this problem.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longleftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

The rate law for this reaction is

$$
\begin{aligned}
& \text { rate }=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}] \\
& \\
& \\
& \text { Overall : } 2^{\text {rd }} \\
& \text { order first order in } \mathrm{H}_{2} \mathrm{O} \text { and } \\
& \text { first order in } \mathrm{CO}
\end{aligned}
$$

Principles of Chemistry II

Poll: Clicker Question 7

$$
\begin{aligned}
& \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \\
& \text { rate }=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}] \\
& {[\mathrm{CO}]_{\mathrm{o}}=0.01 \mathrm{M}} \\
& {\left[\mathrm{H}_{2} \mathrm{O}_{\mathrm{o}}=0.01 \mathrm{M}\right.} \\
& -\frac{d[\mathrm{CO}]}{d t}=-\frac{d\left[\mathrm{H}_{2} \mathrm{O}\right]}{d t}
\end{aligned}
$$

Why is the plot of $\ln [C O]$ not a straight line?
A. It is not $1^{\text {st }}$ order in [CO]
8. Both [CO] and $\left[\mathrm{H}_{2} \mathrm{O}\right]$ are changing
C. It is $2^{\text {nd }}$ order in [CO]
D. The [CO] is changing at a different rate than $\mathrm{H}_{2} \mathrm{O}$

$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
rate $=k\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]$
$[\mathrm{CO}]_{0}=0.01 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]_{0}=2.00 \mathrm{M}$

Why is the plot of $\ln [\mathrm{CO}]$ now a steep straight line?
A. $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is nearly constant B. $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is changing faster than [CO] C. The reaction is $2^{\text {nd }}$ order in [CO] Rate is the same
D. The reaction is 0 order in [CO]

Poll: Clicker Question 8

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

For the initial conditions of
$[\mathrm{CO}]_{\mathrm{o}}=0.01 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]_{0}=2.00 \mathrm{M}$

What is the concentration of $\left[\mathrm{H}_{2} \mathrm{O}\right]$ at very long times (when the reaction has "gone to completion")
A. 0.01 M
B. 2.00 M
C. 1.99 M

Small
D. $\ln (.01) \mathrm{M}$

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longleftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

What if we started with a whole lot of $\mathrm{H}_{2} \mathrm{O}$ compared to CO ?
(The $\left[\mathrm{H}_{2} \mathrm{O}\right]$ ~ constant (since there is so much of it)
Now we can combine the $\left[\mathrm{H}_{2} \mathrm{O}\right]$ with k (since both are constant)

we now say the reaction is pseudo-first order in CO
Principles of Chemistry II

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longleftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

rate $=k\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]=\mathrm{k}^{\prime}[\mathrm{CO}]$
we now say the reaction is pseudo-first order in CO

Determine k ' from a plot of $\ln [\mathrm{CO}]$ vs time

Determine k from k' since we
 know the $\left[\mathrm{H}_{2} \mathrm{O}\right]$

Learning Outcomes

Apply integrated rate equations to solve for the concentration of chemical
species during reaction of different orders.
Apply the concept of half life to kinetics problems
Understand and interpret pseudo first order kinetics data

