UNIT7-DAY2-LaB1230

Tuesday, March 19, 2013 7:59 AM

> Thinking Like a Chemist About Nuclear Change II UNIT7 DAY2

> > CH302 Vanden Bout/LaBrake Spring 2013

What are we going to learn today?

Types of Nuclear Changes Isotopic Stability Ionizing Radiation

IMPORTANT INFORMATION

LM25 & LM26 due Th 9AM

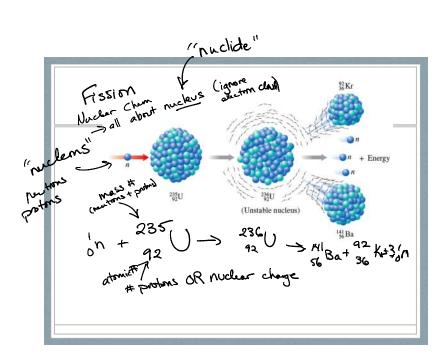
Check out nuclear reaction and decay worksheets.

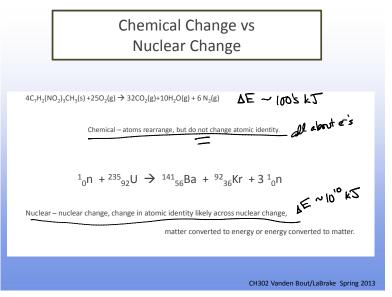
EXAM AVERAGES WERE GOOD. RANGE BETWEEN 69 and 72 DEPENDING ON CLASS.

CH302 Vanden Bout/LaBrake Spring 2013

POLL: CLICKER QUESTION 1

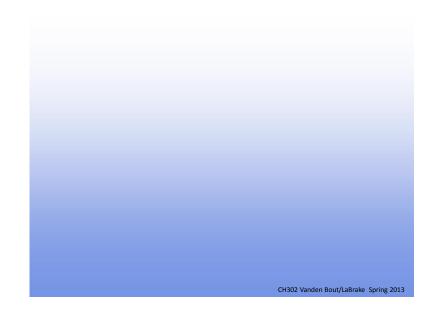
I HAVE:

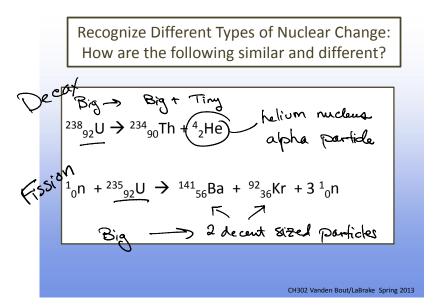

- A) CHECKED my grade for UNIT 6 EXAM
- B) CHECKED my grade for UNIT 6 EXAM, and looked at what I missed.
- C) CHECKED my grade for UNIT 6 EXAM, looked at what I missed, and tried to figure out what the correct answers should be Final
- D) NOT CHECKED my grade for UNIT 6 EXAM
- E) NOT REALIZED that we already taken that EXAM

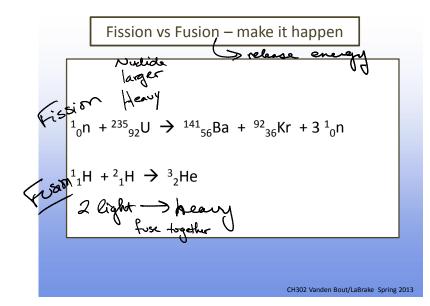

CH302 Vanden Bout/LaBrake Spring 2013

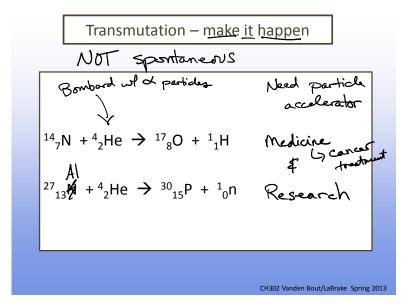
Review From Last Class: Nuclear Change vs Chemical Change

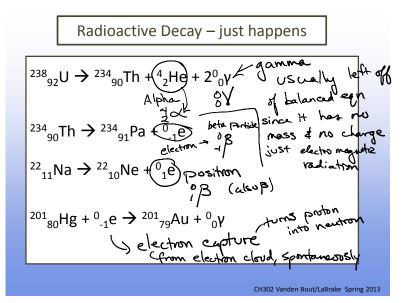
- 1. Compare energy released upon change
- 2. Compare what is conserved across the change
- 3. Types of change and how to recognize type of change


"nuclide" 92 Kr UNIT7-DAY2-LaB1230 Page





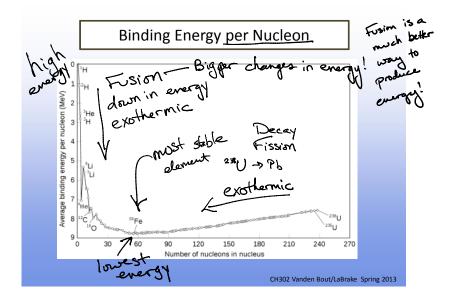



UNIT7-DAY2-LaB1230 Page 3



$$\Delta M = -1.9 \times 10^{-2}$$

$$Am \cup -3 - 3.226 \times 10^{-29} \text{ kg}$$

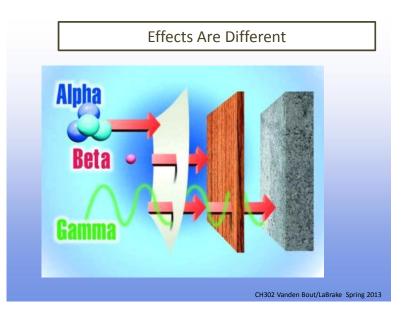

$$JE = (-3.226 \times 10^{-29} \text{ kg})(2.998 \times 0^{8} \text{ m})^{2}$$

$$\Delta E = -2.9 \times 10^{-12} \text{ J}$$

$$\frac{-2.9 \times 10^{-12}}{\text{ individual}} = -1.75 \times 10^{12} \text{ msh}$$

12C -> 6'n + 6'p + Binding Energy 6 -> 6'n + 6'p + Binding Energy 1000er energy

UNIT7-DAY2-LaB1230 Page 6

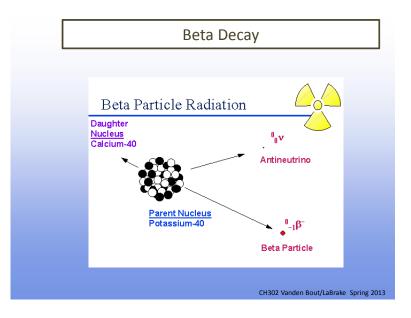

What is nuclear radiation?

- A. High energy electrons
- B. High energy small nuclei
- C. high energy electromagnetic radiation
- D. A&B
- E. all of the above

	Three basic type	s of nuclear radiation	/	In	
al	pha radiation	positive and massive	\.	parti	ing (
be	eta radiation	negative and low mass	`	olu	le
ga	mma radiation	uncharged (no mass)	YYY	JV	
Radioactivity – the spontaneous emission of radiation					

by certain isotopes of certain elements - Madame Curie

CH302 Vanden Bout/LaBrake Spring 2013



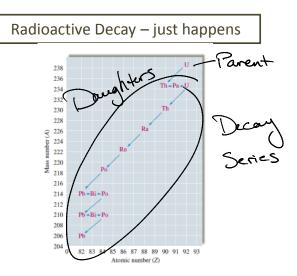
Alpha Particles

INSIDE BODY = HARMFUL bare Helium nucleus will rip electrons off molecules ionization of biomolecules = unhealthy you

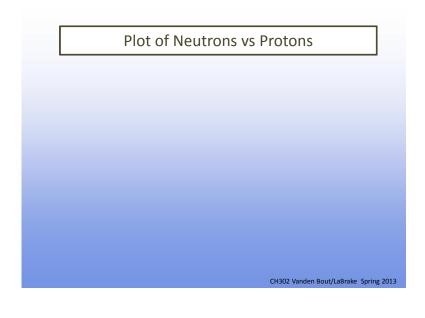
Generally not harmful as they are absorbed by your outer layer of dead skin (bad news if they get in your lungs!)

> http://www.epa.gov/rpdweb00/understand/al pha.html#affecthealth

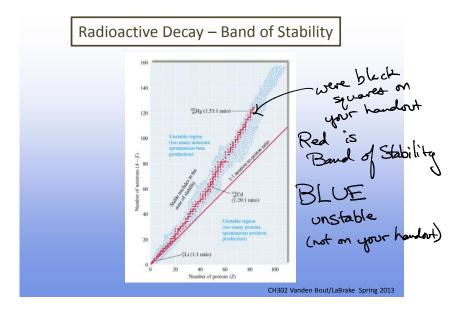
Gamma Rays

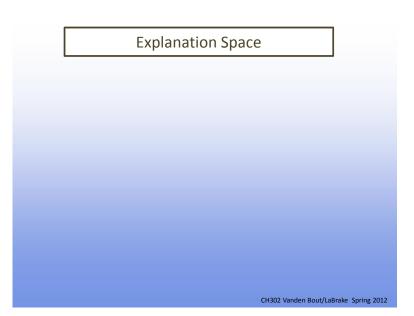

This is what will do you in. Hard to protect against. Highly ionizing. Like the world's worst sunburn (except the radiation can penetrate skin)

http://www.epa.gov/rpdweb00/understand/gamm a.html#affecthealth


CH302 Vanden Bout/LaBrake Spring 2013

Where does radiation come from?


- Unstable radioisotopes
 - Naturally found in environment
 - Made by humans for medical, energy, defense purposes


CH302 Vanden Bout/LaBrake Spring 2013

htp://www-nds.iaea.org/reinsd/vcharthtml/VChartHTML.html DISCOVER THE TYPES OF RADIATION THAT SHOULD OCCUR FOR EACH PART OF GRAPH

What did we learn today? Types of Nuclear change: Fission Fusion Decay Transmutation Decay Isotopic Stability Depends on Neutron to Proton Ratio Decay "Particles" – Ionizing Radiation alpha beta gamma positron Desitron

