UNIT6-DAY6-LaB1230pm

Monday, February 25, 2013
2:48 PM

Thinking Like a Chemist About Acids and Bases

UNIT 6 DAY 6

What are we going to learn today?

Apply the principles of Chemical Equilibrium to mixtures of Conjugate Acid Base Pairs

Predict the pH of such solutions Predict the pH of such solutions after stressing the system

Explore the concept of a Buffer solution

Quiz: Clicker Question 1

The pH of a solution of a soluble salt will be:
A) Neutral
B) Basic
C) Acidic
D) Any of the above, depends on the salt

1. Calculate the pH of the following solution, 0.15 M HF ; given the $\mathrm{Ka}=7.2 \times 10^{-4}$
2. Calculate the pH of the following solution, 0.15 M HF ; given the $\mathrm{Ka}=7.2 \times 10^{-4}$
(A) 2.0
B) 4.0
C) 7.0
D) 9.0
E) 12.0

Quiz: Clicker Question 3

2. Calculate the pH of the following solution, 0.15 M NaF , given the Ka of $\mathrm{HF}=\mathrm{Ka}=7.2 \times 10^{-4}$
A) 2.0
B) $5.9=\mathrm{POH}$
c) 7.0
(D) $8.1=\mathrm{PH}$
E) 12.0

Poll: Clicker Question 4

pH of salt in water

The pH of a 0.1 M aqueous solutions of the salts $\mathrm{Na}^{+} \mathrm{NaCH}_{3} \mathrm{COO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{KCl}$ will be: $_\mathrm{Cl}$
A) Neutral, Neutral, Neutral
B) Basic, Acidic, Neutral
C) Acidic, Neutral, Basic
D) Basic, Neutral, Acidic
E) Acidic, Basic, Neutral
 partner of
common weak base

What are the components?

10020
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
weak acid strong base
What are the major species in solution as a result of mixing:

What are the components?

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \text { what } \mathrm{PH} \text { ? } \\
& \text { What are the major species in solution as a result of mixing: don pirates }
\end{aligned}
$$

What are the components?

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

What are the major species in solution as a result of mixing: $200 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{NaOH}$

How would you determine the pH ?

what a bout x ? Now of comm in x will be VERY Small

$$
\begin{aligned}
1.8 \times 10^{-5} & \approx \frac{x(0.035)}{\operatorname{lo.033)}} \\
1.8 \times 10^{-5} & =x=\left[\mathrm{H}_{3} 0^{+}\right]=K_{a} \\
P H & =-\log \left(1.8 \times\left(0^{-5}\right)=-\log \left(K_{a}\right)=P K_{a}\right. \\
& =4.74
\end{aligned}
$$

Common Ion Effect

$$
\text { \%o ionization }=\frac{\text { amount ionized }}{\text { amt initial }} \times 1800
$$

The \% of ionization is suppressed in the presence of a common ion....Le Chatelier's Principle

$$
\begin{array}{ll}
\mathrm{pH}=2.87 & \mathrm{pH}=4.74 \\
{\left[\mathrm{H}_{3} \mathrm{~J}^{+}\right]=0.00135 \mathrm{M}} & \frac{\left[\mathrm{H}_{3} 0^{+}\right]}{C_{a}}=\frac{1.8 \times 10^{-5}}{0.1} \times 1000 \%
\end{array}
$$

$$
\text { mostly } \mathrm{CH}_{3} \mathrm{CoOH}
$$

Poll: Clicker Question 5

Fully describe: Weak Base + Strong Acid reaction with resulting salt solution

Write the chemical reaction and calculate the pH when a 200 mL 0.1 M solution of ammonia is mixed with a 100 mL 0.1 M solution of hydrochloric acid. (this is an example of what you should have mastered by now. If not, take this problem to a TA or Tutor)

Before you do the calculation you should be able to predict if the resulting solution would be:
A) Neutral
B) Basic
C) Acidic

Look at a DEMO

Add a little NaOH to pure water and see what happens!

Add a little NaOH to a 1:1 mixture of acetic acid and sodium acetate and see what happens!

What is the difference?

Write down the neutralization reaction for the demo $\longrightarrow \mathrm{OH}^{-} \rightarrow$ OH-$^{-}$

[^0]

$H A c$ - acid

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{NaCH}_{3} \mathrm{COO}+\mathrm{H}_{2} \mathrm{O}$ $\begin{array}{lll}1.5 \text { mol } & 0.01 & 1.5 \mathrm{~mol} \\ -0.01 & -0.01 & +0.01\end{array}$ $1.49 \mathrm{~mol} \varnothing \quad 1.51 \mathrm{~mol}$

Because the pH changed very little it is called a buffer solution.

Because the pH changed very little it is called a buffer solution.
conj $a c i \neq$

Buffer- a solution in which the pH resists change when a strong acid or base is added

Because the pH changed very little it is called a buffer solution.

What happens if we keep adding NaOH to the solution..... eventually neutralize all the acid excess NaOt wi weak base "exhaust" buffer

Calculate the pH of buffer solution

$$
\begin{aligned}
& \text { Derive a shortcut formula } \\
& -\log \left(K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{\left[\mathrm{HA}^{A}\right]}\right) \\
& -\log K_{a}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\log \frac{\left[A^{-}\right]}{[H A]} \text {-atuilibrium } \\
& \log \sigma^{n} \mathrm{~K}=\mathrm{H}-\log \frac{\left[A^{-}\right]_{0}}{\sim}=\text { assume these }
\end{aligned}
$$

$$
p H=p K_{a}+\log ^{\left.\frac{[A-}{} \frac{[A}{}\right]_{0}}
$$ DE to common ion effect

CH302 Vanden Bout/LaBrake Spring 2012

When the initial acid and base- are similar in

$$
\left\{\begin{array}{l}
-\mathrm{pKa}=\mathrm{pH}-\log \frac{[\mathrm{A}-]_{0}}{[\mathrm{HA}]_{0}} \\
\mathrm{pH}=\mathrm{pKa}+\log \frac{[\mathrm{CA}]}{(\mathrm{HA}]_{3}}
\end{array}\right.
$$

- When the initial acid and base are similar in concentration then the pH is close to the pKa

For the pH to be 1 unit different than the pKa the difference in concentrations must be at least 10 X !

$$
P O H=p K_{b}+\log \frac{g \text { ghat }}{[3]}
$$

Poll: Clicker Question 6

The pK_{a} of HF is 3.18 . What is the pH of solution of 100 mL of 0.1 M HF and 100 mL of a 0.2 M NaF ?

$$
p H=p K_{a}+\log \frac{[A]}{[A A]}
$$

A. slightly less than 3.18
B. 3.18 need equal concentrations, which we slightly more than 3.18

Calculate the pH of a buffer system

Calculate pH using Henderson-Hasselbalch

Calculate the pH of a buffer solution that is $0.15 \mathrm{M} \mathrm{HNO}_{2}(\mathrm{aq})$ and $0.2 \mathrm{M} \mathrm{NaNO}_{2}$. (same as previous example)

Select buffer composition for desired pH

- Calculate the ratio of the molarities of acetate ions and acetic acid needed to buffer a solution at $\mathrm{pH}=5.25$. The pK_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.75 .

What did we learn today?

Weak acids or bases have limited ionization in the presence of a common ion.

Substantial amounts of conjugate acid base pairs, together in solution resist change in pH .
This effect is called buffering.
When $[H A]=\left[A^{-}\right]$, the $\mathrm{pKa}=\mathrm{pH}$ of that solution.
When $[\mathrm{B}]=\left[\mathrm{BH}^{+}\right]$, the $\mathrm{pKb}=\mathrm{pOH}$ of that solution.

Learning Outcomes

Understand the concept of a buffer, buffer capacity and buffering range.

Calculate the pH of a buffer solution.
Show mastery of the Henderson-Hasselbalch equation
Calculate the pH of a buffer solution after the addition of a strong acid or strong base.

[^0]: puretas

