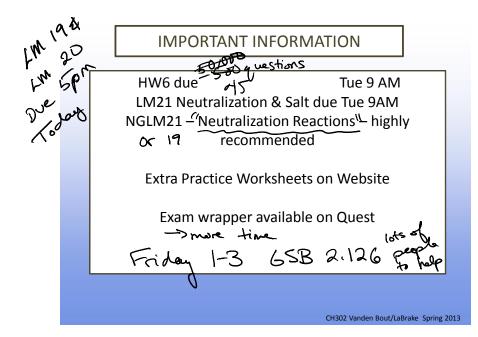

UNIT6-DAY5-LaB1230


Wednesday, February 20, 2013 12:23 PM

What are we going to learn today?

Thinking Like a Chemist in the Context of the Chemical Equilibrium Acids and Bases

pH and pOH Calculations for various solutions Strong Acids, Strong Bases, Weak Acids, Weak Bases and Salts

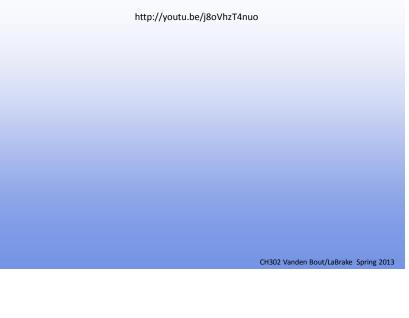
POLL: Clicker Question 1

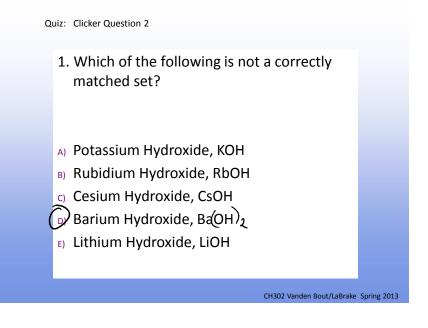
In the following list, select the answer that best describes your thoughts on the in class activity sheets:

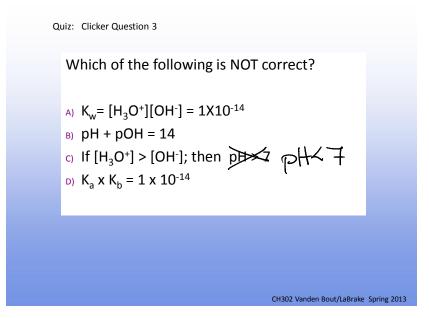
A) Help me to gain a deeper understanding of the chemistry concepts being discussed

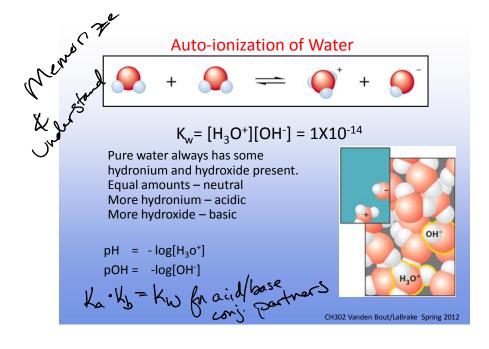
B) Help me develop problem solving strategies

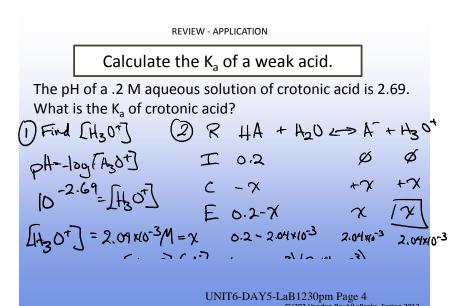
C) Encourage me to figure out what I do and don't

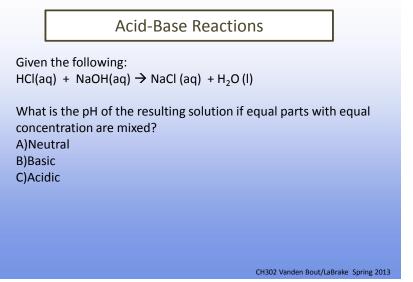

understand by talking with others around me

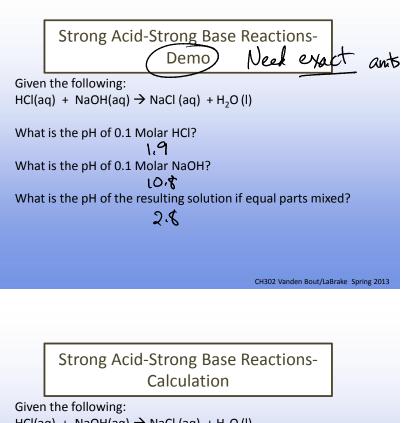

D) Frustrate me because they are too hard to do in the


amount of time given


E) Find them to be a waste of time that could be better spent lecturing


STUDENT VOICE IN CLASS ACTIVITY





$$\begin{bmatrix} H_{3}O^{\dagger} \end{bmatrix} = 2.04 \times 10^{-3} M = \chi \qquad 0.2 - 2.04 \times 10^{-3} \qquad 2.04 \times 10^{-3} \\ K = \frac{[H_{3}O^{\dagger}][A]}{[AA]} = \frac{(2.04 \times 10^{-3})(2.04 \times 10^{-3})}{(0.2 - 2.04 \times 10^{-3})} = 2.02 \times 10^{-5} \\ K = \frac{2.02 \times 10^{-5}}{[AA]} = \frac{(2.04 \times 10^{-3})(2.04 \times 10^{-3})}{(0.2 - 2.04 \times 10^{-3})} = 2.02 \times 10^{-5} \\ K = \frac{2.02 \times 10^{-5}}{[AA]} = \frac{(2.04 \times 10^{-3})(2.04 \times 10^{-3})}{(0.2 - 2.04 \times 10^{-3})} = 2.02 \times 10^{-5} \\ K = \frac{2.02 \times 10^{-5}}{[AA]} = \frac{10^{-5}}{[AA]} =$$

Poll: Clicker Question 4

Given the following: HCl(aq) + NaOH(aq) \rightarrow NaCl (aq) + H₂O (I) What is the pH of 0.1 Molar HCl? $\Pi_{q}O^{+} = 0.1$ $P_{H}^{+} = -(oq(0.1))$ What is the pH of 0.1 Molar NaOH? UNIT6-DAY5-LaB1230pm Page 5

	Calcula	tion	
	n the following: q) + NaOH(aq) → NaCl (aq)	+日〇(1)	
			off=-log(0.1)
What	is the pH of 0.1 Molar HCl?	$\left[H_30^{+}\right] = 0.1$	pH=-log(0.1) pH=1
What	is the pH of 0.1 Molar NaOH	1? [0H]= 0.1 [.	(0,0)
	is the pH of the resulting so concentration are mixed?	lution if equal parts	mixed of
equal t=7	O. I mol HCL +	0.1 mil NaOtt -	> Nacl O.1 mol
YY.	ø	Ø CH302 Vanden Bo	out/LaBrake Spring 2013

Poll: Clicker Question 5

 Acid-Base Reactions

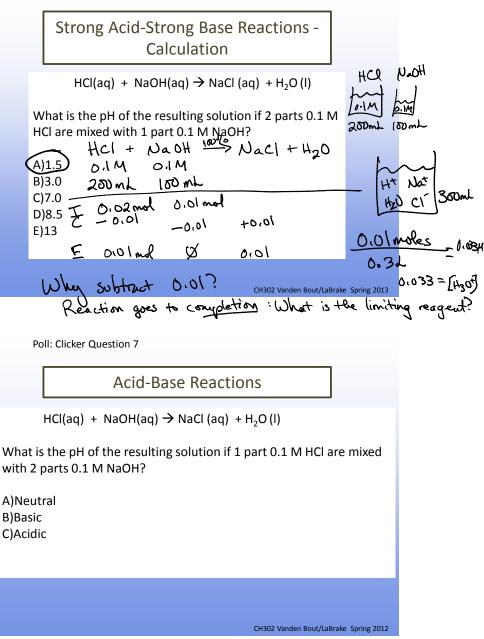
 HCl(aq) + NaOH(aq) → NaCl (aq) + H₂O(l)

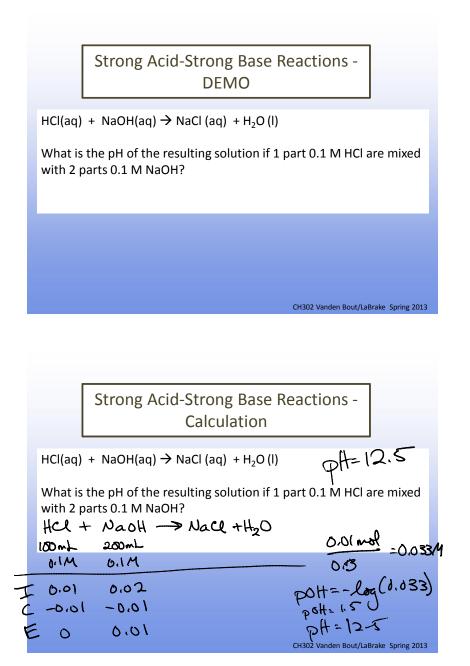
 What is the pH of the resulting solution if 2 parts 0.1 M HCl are mixed with 1 part 0.1 M NaOH?

 A)Neutral

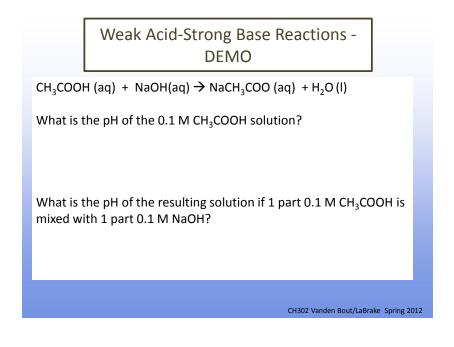
 B)Basic

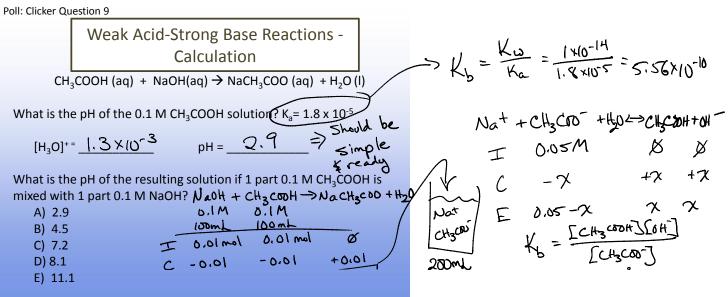
 C)Acidic

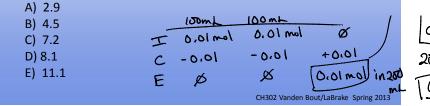

Strong Acid-Strong Base Reactions - DEMO


 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$

What is the pH of the resulting solution if 2 parts 0.1 M HCl are mixed with 1 part 0.1 M NaOH?


UNIT6-DAY5-LaB1230pm Page 6


Poll: Clicker Question 6



	Poll: Clicker Question 8
	Acid-Base Reactions
,	CH ₃ COOH (aq) + NaOH(aq) → NaCH ₃ COO (aq) + H ₂ O (I) \checkmark
(What is the pH of the 0.1 M CH ₃ COOH solution? Λ
C	A)Neutral
	A)Neutral weak acid (-Off B)Basic "acetic acid" Carboxylic acid C)Acidic
/	,
[4	What is the pH of the resulting solution if 1 part 0.1 M CH ₃ COOH is
6	mixed with 1 part 0.1 M NaOH?
	A)Neutral
	(B)Basic (H2COO+H2O <> cH3COOHHUH) (H2COO)
	A)Neutral B)Basic C)Acidic Sult is a weak base
	CH302 Vanden Bout/LaBrake Spring 2013

What is the pH of the resulting solution if 1 part 0.1 M CH_3COOH is mixed with 1 part 0.1 M NaOH?

$$\frac{CH_{3}(a)}{DOML} = \frac{\Gamma CH_{3}(a)H_{3}(b)}{\Gamma CH_{3}(a)H_{3}(b)}$$

$$\frac{1}{D_{1}OSM} = \frac{1}{5.56} \frac{1}{5.56} \frac{1}{10} = \frac{1}{0.05}$$

$$x = 5 \times 10^{-6}$$

$$\frac{1}{D}H = 5.9$$

$$DH = 8.1$$

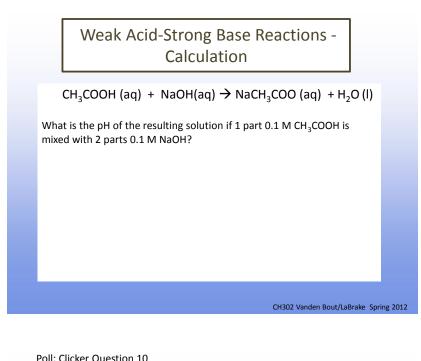
Poll: Clicker Question 9

Acid-Base Reactions

 $CH_3COOH (aq) + NaOH(aq) \rightarrow NaCH_3COO (aq) + H_2O (I)$

What is the pH of the resulting solution if 1 part 0.1 M $\rm CH_3COOH$ is mixed with 2 parts 0.1 M NaOH?

A)Neutral B)Basic C)Acidic


CH302 Vanden Bout/LaBrake Spring 2012

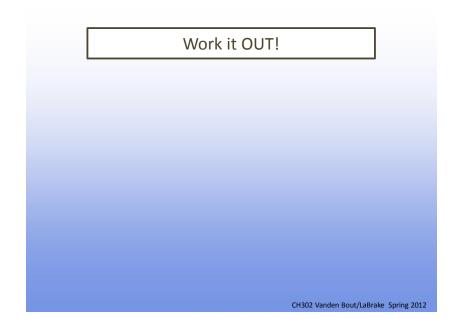
CH302 Vanden Bout/LaBrake Spring 2012


Weak Acid-Strong Base Reactions - DEMO

 $CH_3COOH (aq) + NaOH(aq) \rightarrow NaCH_3COO (aq) + H_2O (I)$

What is the pH of the resulting solution if 1 part 0.1 M $\rm CH_3COOH$ is mixed with 2 parts 0.1 M NaOH?

pH of salt in water	
The pH of a solution of a soluble salt will be:	
A) Neutral B) Basic	
C) Acidic D)Any of the above, depends on the salt	
CH302 Vanden Bout/LaBr	ake Spring 2012



Acid or Base Game! Na CH300 from Strong week acid Sbasic NaUH grs 600% to get satt NH42Cl weak base + strong acid Sacidic NH3 + HCe > NH4Cl + H20 NaCl Strong acid + strong base Sreetfal HCe + NaOH > Na⁺ + ce + H20 HCe + NaOH > Na⁺ + ce + H20 CH302 Vanden Bout/LaBrake Spring 2012

THIS IS WHAT WE EXPECT YOU CAN DO NOW!

Fully describe: Weak Base + Strong Acid reaction with resulting salt solution Write the chemical reaction and calculate the pH when a 0.1 M Solution of ammonia is mixed with a 0.1 M solution of hydrochloric acid. Before you do the calculation you should be able to predict if the resulting solution would be: A) Neutral B) Basic C) Acidic CH302 Vanden Bout/LaBrake Spring 2012

UNIT6-DAY5-LaB1230pm Page 13

What did we learn today?

Determine the pH of solutions of: strong acid strong base weak acid weak base salts formed as the result of acid-base neutralization reactions.

Learning Outcomes

Show mastery of neutralization reactions including predicting products, determining molar concentrations of all species in solution and predicting and calculating pH of resulting solution

Predict whether a salt is expected to produce an acidic, basic or neutral solution when dissolved in water.

Calculate the pH (and/or pOH) of the solution of a soluble salt.