UNIT6-DAY4-LaB1230pm

Monday, February 18, 2013
2:28 PM

Thinking Like a Chemist About Acids and Bases Part II

UNIT6 DAY4

What are we going to learn today?

Thinking Like a Chemist in the Context of the Chemical Equilibrium Acids and Bases

Conjugate Acid Base Pairs Acid/Base Strength
Auto-ionization of Water pH and pOH

$$
\text { LM19 } K_{a}, K_{b} \& K_{w} \text { due Th } 9 \text { AM }
$$ LM 20 pH \& DOH due Th 9 AM

Extra Practice Worksheets on Website

NGLM 101 - Exam $\omega_{\text {rapper }}$ Bonus Pts (m participation)

Quiz Clicker Question 1

1. Which of the following is not a strong acid?
(A) HF
B) HCl
c) HBr
D) HI
E) HClO_{4}
2. Which of the following is not a strong base?
a) NaOH
B) RbOH
c) $\mathrm{Sr}(\mathrm{OH})_{2}$
(D) $\mathrm{Mg}(\mathrm{OH})_{2}$ not soluble in $\mathrm{H}_{2} \mathrm{O}$

Quiz Clicker Question 3
3. Which of the following is not a correctly matched set?

Dumped From Brain Prior Acid-Base Knowledge

Demo Review -
HCl and $\mathrm{CH}_{3} \mathrm{COOH}$ solutions both turned yellow when indicator was added. Very different chemical structures, but same effect on indicator. Why?

Action in Solution
Acid is PROTON donor $\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \rightarrow$ common to solutions
Base is PROTON acceptor

Quiz Clicker Question 4

Which reactant is behaving like a base
in the following reaction?

A) OH^{-}Base is a proton acceptor
в) HCN
c) $\mathrm{H}_{2} \mathrm{O}$
(D) CN^{-}

What is the conjugate base of HCOOH ?
What is the conjugate acid of $\mathrm{HPO}_{4}{ }^{2-}$?
A) $\mathrm{HCOO}^{-}, \mathrm{PO}_{4}{ }^{3-}$

What is the conjugate base of HCOOH ?
What is the conjugate acid of $\mathrm{HPO}_{4}{ }^{2-}$?
A) $\mathrm{HCOO}^{-}, \mathrm{PO}_{4}^{3-} \mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HCOO}+\mathrm{H}_{3} \mathrm{O}^{+}$
B) $\mathrm{COOH}, \mathrm{PO}_{4}^{3-}$
$\mathrm{HPO}_{4}^{2{ }^{2}}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}$
c) $\mathrm{HCOO}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{1-}$
D) $\mathrm{HCOOH}_{2}{ }^{+}, \mathrm{H}_{3} \mathrm{PO}_{4}$

REVIEW
Brønsted-Lowry Acid-Base-Conjugate Partners $1^{\text {st }}$ label reactants as acid or base $2^{\text {nd }}$ label products as conjugate acid or base Can you finish this reaction and label conjugate acid/base pairs?

The acids in the first data table are listed:
A) In order of increasing acid strength
B) In order of decreasing acid strength
C) There is no way to say because pH^{\prime} s are not listed D)There is no way to say because pKa 's are not listed

Table I -acids

Conjugate Acid-Base Pairs

After examining the Ka and Kb data in the two data tables, the inferred relationship between the strengths of acids and their conjugate partners is:
A)Strong acids have strong conjugate base partners B) The stronger the acid, the weaker the conjugate base partner C) This is nonsense as pH 's are not given

Take a Look at Part II on Activity Sheet
$\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{+}$
The equilibrium expression for water is:
A) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{O}^{2}{ }^{1}\right.$
B) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]$
(C) $K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$

Take a Look at Part II on Activity Sheet
$\mathrm{HClO}_{2}($ ae $)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{ClO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{Ka}_{a}=\frac{\left.\left[\mathrm{ClO}_{2}-\right] \mathrm{CH}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HClO}_{2}\right]}$
$+\mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{AClO}_{2}+\mathrm{OH}^{-} \quad \mathrm{K}_{b}=\frac{\left[\mathrm{HClO}_{2}\right][\mathrm{OH}]}{\mathrm{rran}^{-7}}$

$$
\begin{aligned}
& \frac{+\mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{AClO}_{2}+\mathrm{OH}^{-}}{\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}}=\frac{\left[\mathrm{HClO}_{2}\right][\mathrm{OH}]}{\left[\mathrm{ClO}_{2}^{-}\right]} \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& K_{\omega}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \\
& \text { frimpe }
\end{aligned}
$$

Auto-ionization of Water

$>$ Pure water always has some hydronium and hydroxide present.

- Equal amounts neutral
- More hydronium - acidic
- More hydroxide - basic HI?

Determine the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$\& $\left[\mathrm{OH}^{-}\right]$at $25{ }^{\circ} \mathrm{C}$ in $6.0 \times 10^{5} \mathrm{M} \mathrm{HI}(\mathrm{aq})$

$$
\begin{aligned}
& \mathrm{HI}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+I^{-} \\
& \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.0 \times 10^{-2} \mathrm{M} \text { (strong acid, ionizes (1082)) } \\
& {\left[\mathrm{OH}^{+}\right]=\text {? }} \\
& \mathrm{K}_{\omega}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad \text { use water } \\
& 1 \times 10^{-14}=\left(6.0 \times 10^{-2}\right)\left[\mathrm{OH}^{-}\right] \text {equilorion }\left[\mathrm{OH}^{2}\right] \\
& \text { to alolot }
\end{aligned}
$$

$$
\begin{gathered}
1 \times 10^{-14}=\left(6.0 \times 10^{-2}\right)\left[\mathrm{OH}^{-}\right] \\
1.7 \times 10^{-13}=\left[\mathrm{OH}^{-}\right]
\end{gathered}
$$

Nl_{3} base Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$whats this?
wal ak ar acid $\mathrm{K}_{a} \cdot \mathrm{~K}_{b}=1 \times 10^{-14}$
Determine the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$\& $\left[\mathrm{OH}^{-}\right]$in $6.0 \times 10^{-2} \mathrm{M} \xrightarrow[\mathrm{NH}_{4}^{+}+\text {aq) }]{\text { weak }}$

$$
\begin{aligned}
& \text { some }
\end{aligned}
$$

acid 7 Ka

$$
\begin{aligned}
& K_{a}=\frac{x x}{6.0 \times 10^{-2}-x} \\
& \sqrt{5.6 \times 10^{-10}} \equiv \frac{x^{2}}{: \times 10^{-2}} \\
& x=5.8 \times 10^{-6}=\left[A_{3} O^{+}\right] \quad
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}
\end{aligned}
$$

$$
\mathrm{CH}_{3} \mathrm{COO}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{b}}=\text { ? }
$$

Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from the pH

- Find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution with a $\mathrm{pH}=4.83$.

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

Take log of both sides of equation:

Calculate pOH and $\left[\mathrm{OH}^{-}\right]$in a solution with a $\mathrm{pH}=4.83$.

Calculate the K_{a} of a weak acid.

The pH of a .2 M aqueous solution of crotonic acid is 2.69 . What is the K_{a} of crotonic acid?

Calculate the pH of a weak base solution.

Calculate the pH of a $.15 \mathrm{M} \mathrm{NH}_{2} \mathrm{OH}(\mathrm{aq})$ solution

What did we learn today?

The strengths of conjugate acid base pairs is coupled via $\mathrm{K}_{\mathrm{w}}: \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$

Strong acid - Very Weak Conjugate Base
Strong base - Very Weak Conjugate Acid
Determine pH and pOH of various solutions.

Learning Outcomes

Convert between hydronium ion concentration, hydroxide ion concentration, pH and pOH for a given solution

Determine the pH of a strong acid or base solution
Determine the pH of a weak acid or base solution
Apply concepts from equilibrium to acid/base problems

