UNIT6-DAY2-LaB1230

Monday, February 11, 2013 6:31 PM

What are we going to learn today?

Thinking Like a Chemist in the Context of the Chemical Equilibrium

Equilibrium Constant, K Relationship between K and ΔG

Poll: Clicker Question 2

fixed composition of reactants and products

reactants

K depends on $\Delta_r G^\circ$

AG=-RTLAK memorize

16=0H-TAS

You need to be able to use a table to find $\Delta_r G^\circ$ from $\Delta_f G^\circ$ or from $\Delta_f H^\circ$ to find $\Delta_r H^\circ$ and S° to find $\Delta_r S^\circ$

 $\Delta_r H^\circ = 10 \text{ kJ mol}^{-1} \text{ and } \Delta_r S^\circ = 20 \text{ J K}^{-1} \text{ mol}^{-1}$

Assuming $\Delta_r H^\circ$ and $\Delta_r S^\circ$ don't change with temperature does this reaction favor the products or the reactants at 400K?

NG=NH-TAS A. Products 101005- (100) 200) (B.) Reactants = 10000 -8000 = + 20005 There is no way to know without a balance equation 26>0Reactantfavord NON spontanes US C. rinciples of Chemistry II © Vanden E Water $2H_2O(g) \leftrightarrow 2H_2(g) + O_2(g)$ K products reactorits What is K for this reaction at 298K Poll: Clicker Question 5 • • • Α. extremely small

OII: CIICKEI QUESLION /

At 313 K, $\Delta_r G^\circ = +41$ kJ mol⁻¹ for this reaction $2H_2S(g) \leftrightarrow 2H_2(g) + S_2(g)$ You find the following partial pressures at 313K H_2 is 1 atm, S_2 is 1 atm, $H_2S = 2$ atm How will this reaction proceed? What shall a_1 is 1 atm, S_2 is 1 atm, $H_2S = 2$ atm A. move toward the products $\Delta G^\circ = -RThK = 1.444 \times 10^{-7}$ B. move towards the reactants

At 313 K, $\Delta_r G^\circ = +41$ kJ mol⁻¹ for this reaction $2H_2S(g) \iff 2H_2(g) + S_2(g)$ You find the following partial pressures at 313K H_2 is 1 atm, S_2 is 1 atm, $H_2S = 2$ atm

Equilibria response to change

- Le Chatelier's Principle: When a stress is applied to a system in dynamic equilibrium, the equilibrium tends to adjust to minimize the effect of the stress.
- Types of stress:
 - Adding or removing reagents
 - Changing volume of gas phase
 - Adding or removing heat

 $\begin{array}{ccc} \text{Lef+} & \text{Right} \\ \text{Reactant} & \text{Product} \\ \text{Consider the equilibrium $SO_3(g) + NO(g)} \leftarrow \rightarrow SO_2(g) + NO_2(g). \end{array}$ Predict the effect on the equilibrium of a) the addition of NO add reactant shift Right b) the removal of SO₂ shift Right remove product c) the addition of NO₂. Shift left CH302 Vanden Bout/LaBrake Spring 2013

the addition of NO the removal of SO ₂ the addition of NO Decrease the volum	2 heft ne of reaction vess erature— shift le	sel- no c ft	Longe, e	guol L'mole	4
A) SHIFT RIGHT	B) SHIFT LEFT	c)No	change	•	
			0		
CH302 Vanden Bout/LaBrake Spring 2013					

What did we learn today?

K is related to ΔG

Equilibrium is achieved at minimum free energy – depends on the energies of reactants and products and entropy of mixing

Equilibrium can be disturbed, reaction will adjust to return to equilibrium condition.

Learning Outcomes

Describe the relationship between free energy and equilibrium.

Convert ΔG to K and vice versa

Determine if a system is at equilibrium and if not which direction the reaction will shift to achieve equilibrium

Predict the direction of a reaction after an applied stress. Stresses include concentration changes, increase or decrease in temperature and global volume change.