UNIT6-DAY1-LaB1230

Wednesday, February 06, 2013 10:04 PM

CH302 Vanden Bout/LaBrake Spring 2013

What are we going to learn today?

Thinking Like a Chemist in the Context of the Chemical Equilibrium

Concept of Equilibrium Concentrations Law of Mass Action Equilibrium Constant, K

CH302 Vanden Bout/LaBrake Spring 2013

Y'ALL THINK ABOUT Chemical Equilibrium Consider graphically: $PbCl_2(s) \leftarrow \rightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$ $\implies solide do not have concentrations$ Plot change in concentration with time

UNIT6-DAY1-LaB1230 Page 2

Y'ALL THINK ABOUT Chemical Equilibrium

Try to interpret what is going on in this graph.

Keeping it straight (R)ICE diagram	Can question
$ R 3H_2(g) + N_2(g) \longrightarrow 2NH_3(g) $	Know @ 1NH3
Compound Initial Change Equilibriu	n equil. I more
TIOI Ø	v ∽
UNIT6-DAY1-LaB1230 Page 5	

¥Equilibrium does not depend on starting conditions

TABLE 6.1 Results of Three Experiments for the Reaction $N_2(g) + 3H_2(g) \implies 2NH_3(g)$					
E	xperiment	Initial Concentrations	Concentrations	$K = \frac{[\mathrm{NH}_3]^2}{[\mathrm{N}_2][\mathrm{H}_2]^3}$	
	Ι	$[N_2]_0 = 1.000 M$ $[H_2]_0 = 1.000 M$ $[NH_3]_0 = 0$	$[N_2] = 0.921 M$ $[H_2] = 0.763 M$ $[NH_3] = 0.157 M$	$K = 6.02 \times 10^{-2} \text{ L}^2/\text{mol}^2$	all
	Π	$[N_2]_0 = 0 [H_2]_0 = 0 [NH_3]_0 = 1.000 M$	$[N_2] = 0.399 M$ [H ₂] = 1.197 M [NH ₃] = 0.203 M	$K = 6.02 \times 10^{-2} \text{ L}^2/\text{mol}^2$	Same
	III	$[N_2]_0 = 2.00 M$ $[H_2]_0 = 1.00 M$ $[NH_3]_0 = 3.00 M$	$[N_2] = 2.59 M$ $[H_2] = 2.77 M$ $[NH_3] = 1.82 M$	$K = 6.02 \times 10^{-2} \text{ L}^2/\text{mol}^2$)

Figure Copyright Houghton Company. All rights reser

Fairly Easy problem Bruchets are for equilibrium concentration Given K = 200 and $\mathcal{I}[H_2] = .2 \text{ M}, [N_2] = 0.4 \text{ M}, \text{ and } C_{NH3} = .1 \text{ M}$ Concentration initially fill in the rest SNH.72 11

POLL: CLICKER 4

For the following reaction what is the change value for H_2O ?

$$2C_2H_6(g) + 7O_2(g) \longrightarrow 4CO_2(g) + 6H_2O(g)$$

R C_2H_6 O_2 CO_2 H_2O
I I.0 I.4 I.8 0
C $-2x$? ? ?

A. - 2x B. + 2x C. + 3x D. + 6x UNIT6-DAY1-LaB1230 Page 13

C -2x ? ? ?

$$\begin{array}{c} A. - 2x \\ B. + 2x \\ C. + 3x \\ D. + 6x \end{array}$$

POLL: CLICKER 5

For the following reaction what is the equilibrium value for CO₂?

$$2C_{2}H_{6}(g) + 7O_{2}(g) \rightarrow 4CO_{2}(g) + 6H_{2}O(g)$$

$$R \quad C_{2}H_{6} \quad O_{2} \quad CO_{2} \quad H_{2}O$$

$$I \quad I.0 \quad I.4 \quad I.8 \quad 0$$

$$C \quad -2x \quad ? \quad ? \quad ?$$

$$E \quad ?$$

$$A. \quad 1.8 - 2x$$

$$B. \quad 1.8 + 2x$$

$$C. \quad 1.8 + 4x$$

$$D. \quad 1.0 + 6x$$

- A. extremely small
- B. extremely large
- C. approximately one

Explanation Space	
CH202 Vanden Rout/Jac	trake Spring 2012
	Take Spring 2015

What did we learn today?

Reactions don't always go 100 % to products.

Law of Mass Action

Concept of the "Activity" of reactant or product.

Quantify the extent of reaction using equilibrium constant, K.

CH302 Vanden Bout/LaBrake Spring 2013

Learning Outcomes

Set up mass action expression for equilibrium equation Determine if a system is at equilibrium and it not which Direction the reaction will shift to achieve equilibrium Know the difference between K_p and K_c

Determine new values for K when combining multiple reactions Set up and solve RICE table

CH302 Vanden Bout/LaBrake Spring 2013