Thinking Like a Chemist About Chemical Equilibrium

UNIT 6 DAY 1

What are we going to learn today?

Thinking Like a Chemist in the Context of the Chemical Equilibrium

Concept of Equilibrium Concentrations Law of Mass Action
Equilibrium Constant, K

IMPORTANT INFORMATION

> HW4 due Tue 9 AM
> LM13 Equilibrium Constant $\mathcal{L} 1^{\text {st }}$ thon hmulK LM14 K and $\Delta \mathrm{G}$
> Exams Grades Posted by Saturday

Indicate the level of agreement that you have with the following question:

You have a certain amount of intelligence, and you can't really do much to change it.
A) Strongly Disagree
B) Disagree
C) Somewhat in between, depends
C)Agree
D) Strongly Agree

Y'ALL THINK ABOUT Chemical Equilibrium

Consider graphically: $\mathrm{PbCl}_{2}(\mathrm{~s}) \longleftrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
Plot change in concentration with time do net have concentrations

Consider graphically: $\mathrm{PbCl}_{2}(\mathrm{~s}) \longleftrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
\rightarrow solids do net have concentrations
Plot change in concentration with time

time

Y'ALL THINK ABOUT Chemical Equilibrium
Try to interpret what is going on in this graph.

CH302 Vanden Bout/LaBrake Spring 2013

POLL: CLICKER 2

Try to interpret what is going on in this graph.
The chemical reaction is:
A) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow \quad \mathrm{NH}_{3}(\mathrm{~g})$
B A) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \geq 2 \mathrm{NH}_{3}(\mathrm{~g})$

The end is equilibrium
A) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})_{6}$
-DAY-LaB1230 Prime 3

The chemical reaction is:
 A) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{NH}_{3}(\mathrm{~g})$
 BA $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \geq 2 \mathrm{NH}_{3}(\mathrm{~g})$
 C $A)_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
 DA) $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

pretty version
Y'ALL THINK ABOUT Chemical Equilibrium

pretty version
Y'ALL THINK ABOUT Chemical Equilibrium

CH302 Vanden Bout/LaBrake Spring 2013

Imagine you start out with
10 mole of H_{2} and I moles of N_{2}
At equilibrium you find you have I mole of NH_{3}
How many moles of H_{2} are there at equilibrium?
A. 5 moles H_{2} Given I mole NH_{3}, How much
$\mathrm{B}^{2} \mathrm{Has}_{2}$. H_{2} did we use?
B. 7 moles H_{2}-used 1.5
D. $\quad 9.5$ moles H_{2}

$$
\begin{aligned}
& \text { Compound Initial } \\
& \text { Change } \\
& \text { Equilibrium } \\
& c-3 x-x \\
& \text { E } 10-3 x \text { 1-x } \\
& 10-3(0.5) \quad 1-0.5 \\
& 8.5 \quad 0.5 \\
& x=0.5 \\
& 2 x
\end{aligned}
$$

Think about what is going on toward the end - At equilibrium can we quantify end?.
 concentrations
 Do rot

CH302 Vanden Bout/LaBrake Spring 2013

The key idea

The ratios of the molecules stops changing We discover the ratio is a constant

We'll give the ratio a name

The equilibrium constant It has to do with equilibrium It is a constant

Write K for the following generic reaction:

GASES:
UNIT6-DAY1-LaB1230 Page 7

SOLUTIONS:
VIM as Molar concentration
GASES: $q=\frac{P_{\text {gas }}}{1 \text { atm }}$ or $\frac{P_{\text {gas }}}{\text { bar }}$ partialpressure SOLID or LIQUID: $Q=1 \begin{aligned} & \text { free ever gy doesn't } \\ & \text { change w/ solids or }\end{aligned}$

Y'ALL THINK ABOUT Chemical Equilibrium

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \leftrightarrow \rightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

Write the equilibrium constant for this reaction:

What is the expression for the equilibrium constant for this reaction?

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

A. $\quad\left(P_{N H 3}\right) /\left(P_{N_{2}}\right)\left(P_{H 2}\right)$
B. $\quad\left(\mathrm{P}_{\mathrm{N} 2}\right)\left(\mathrm{P}_{\mathrm{H} 2}\right) /\left(\mathrm{P}_{\mathrm{NH} 3}\right)$
C. $\left(\mathrm{P}_{\mathrm{NH} 3}\right)^{2} /\left(\mathrm{P}_{\mathrm{N} 2}\right)\left(\mathrm{P}_{\mathrm{H} 2}\right)^{3}$
D. $\quad\left(\mathrm{P}_{\mathrm{N} 2}\right) 3\left(\mathrm{P}_{\mathrm{H} 2}\right) / 2\left(\mathrm{P}_{\mathrm{NH} 3}\right)$
B. $\quad\left(P_{\mathrm{N} 2}\right)\left(\mathrm{P}_{\mathrm{H} 2}\right) /\left(\mathrm{P}_{\mathrm{NH} 3}\right)$
C. $\left(\mathrm{P}_{\mathrm{NH} 3}\right)^{\left.2 /\left(P_{\mathrm{N} 2}\right)\left(\mathrm{P}_{\mathrm{H} 2}\right)^{3}\right)}$
D. $\quad\left(P_{N_{2}}\right) 3\left(P_{H_{2}}\right) / 2\left(P_{N H 3}\right)$

810
cq

$$
\text { Law of Mass Action } \begin{aligned}
& \text { at equilibrium } \\
& \text { mass action }=K
\end{aligned}
$$

- The law of mass action: at equilibrium the composition of the reaction mixture can be expressed in terms of an equilibrium constant, K, which is expressed as the ratio of the $\overline{\text { concentrations at equilibrium of the products mass }}$ raised to the stoichiometric coefficient divided by the concentrations of the reactants at equilibrium raised to the power of the stoichiometric coefficients.

THINK ABOUT K in Learning Module:

Value of k depends on exact balanced eq ALL in Learning module
K in terms of pressure, K_{p}

- $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ gases can
- Express as $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
- Express as K_{p}

$$
K_{P}=\frac{P_{N_{3}}^{2}}{P_{N_{2}} P_{H_{3}}^{3}}
$$

use ideal gas law to derive relationship \& with blu $K_{c} \$ K_{p}$ \rightarrow from free energy in LM,

- Homogeneous - reactants and products are all in the same phase
- Heterogeneous - reactants and products are in different_phases
. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NH}_{3}$ (g)$\mathrm{CaCO}_{3}(\mathrm{~s}) \leftarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \longleftrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$ Ks
$\$$
$\mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g}) \longleftrightarrow \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})$
- Write the equilibrium constants for these reactions.

Pure liquids
(like $\mathrm{H}_{2} \mathrm{O}$)
has an activity of 1

$$
K=\frac{\text { products }}{\text { reactants }}
$$

What does the value of K tell us?

- $K>1$ more products than reactants "product favored" at equilbriom
- $K<1$ more reactants than products at equilibrium "favors reactants"
\nexists Equilibrium does not depend on starting conditions

TABLE 6.1 Results of Three Experiments for the Reaction $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$

Each equilibrium has different concentrations, but the same value for Kc

Really Easy problems
At equilibrium you find

$$
\left[\mathrm{H}_{2}\right]=. \mathrm{I} \mathrm{M},\left[\mathrm{~N}_{2}\right]=0.2 \mathrm{M} \text {, and }\left[\mathrm{NH}_{3}\right]=.2 \mathrm{M} \text { Kexpressom }
$$

Reaction $\quad 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Initial		
Change		
Equilibrium		

Fairly Easy problem

$$
K=200=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{(0.2)^{3}(0.4)}
$$ (not at equilibrium)

$$
\left[\mathrm{NH}_{3}\right]=0.8
$$

$$
\begin{aligned}
0.1+2 x & =0.8 \\
x & =0.35
\end{aligned}
$$

POLL: CLICKER 4

For the following reaction what is the change value for $\mathrm{H}_{2} \mathrm{O}$?

\[

\]

A. $-2 x$
B. $+2 x$
C. $+3 x$
D. $+6 x$

UNIT6-DAY1-LaB 1230 Page 13

$$
\begin{aligned}
& \text { Given } K=200 \text { and } \\
& {\left[\mathrm{H}_{2}\right]=.2 \mathrm{M},\left[\mathrm{~N}_{2}\right]=0.4 \mathrm{M} \text {, and } \mathrm{C}_{\mathrm{NH}}=.1 \mathrm{M}} \\
& \text { fill in the rest } \\
& \rightarrow \text { Concentration } \\
& \text { initially }
\end{aligned}
$$

A. $-2 x$
B. $+2 x$
C. $+3 x$
D. $+6 x$

POLL: CLICKER 5
For the following reaction what is the equilibrium value for CO_{2} ?

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

R	$\mathrm{C}_{2} \mathrm{H}_{6}$	O_{2}	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$

1	1.0	1.4	1.8	0

A. $1.8-2 \mathrm{x}$
B. $1.8+2 x$
C. $1.8+4 x$
D. $1.0+6 x$

What is K for this reaction at 298 K

A. extremely small
B. extremely large
C. approximately one

[^0]
Learning Outcomes

Set up mass action expression for equilibrium equation Determine if a system is at equilibrium and it not which Direction the reaction will shift to achieve equilibrium Know the difference between K_{p} and K_{c} Determine new values for K when combining multiple reactions Set up and solve RICE table

[^0]: What did we learn today?

 Reactions don't always go 100 \% to products.

 Law of Mass Action

 Concept of the "Activity" of reactant or product.

 Quantify the extent of reaction using equilibrium constant, K.

