UNIT5-DAY6-LaB1230pm

Thursday, January 31, 2013 8:27 AM

Thinking Like a Chemist About Solubility Equilibrium

UNIT5 DAY6

CH302 Vanden Bout/LaBrake Spring 2013

What are we going to learn today?

Thinking Like a Chemist in the Context of the Solution Equilbria

Reaction Quotient Common Ion Effect Temperature & Solubility & Supersaturated

IMPORTANT INFORMATION

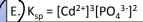
NG LM 100 - How to succeed on the exam LM12 and HW3 due Tue 9AM

Looking ahead:
EXAM 1, Feb 6th 7 – 9 PM
Details of room assignments will be posted on website next week

1-3 one-onone hulp

CH302 Vanden Bout/LaBrake Spring 2013

Quiz: Clicker Question 1


The K_{sp} expression for the dissolution of $Cd_3(PO_4)_2$ is:

A.
$$K_{sp} = [Cd^{2+}][PO_4^{3-}]$$

B.
$$K_{sp} = [Cd^{2+}]^2 [PO_4^{3-}]^2$$

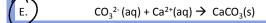
C.
$$K_{sp} = [x][y]$$

D.
$$K_{sp} = [x]^2 [x]^3$$

CH302 Vanden Bout/LaBrake Spring 2013

Clicker Question 2

The net ionic equation for the following is:


$$(NH_4)_2CO_{3(aq)} + CaCl_{2(aq)} \rightarrow$$

A.
$$(NH_4)_2CO_3(aq) + CaCl_2(aq) \rightarrow 2NH_4Cl(aq) + CaCO_3(aq)$$

B.
$$(NH_4)_2CO_3(aq) + CaCl_2(aq) \rightarrow 2NH_4Cl(aq) + CaCO_3(s)$$

C.
$$2NH_4^+(aq) + CO_3^{2-}(aq) + Ca^{2+}(aq) + 2Cl^- \rightarrow 2NH_4^+(aq) + 2Cl^-(aq) + CaCO_3(s)$$

D.
$$2NH_4^+(aq) + CO_3^{2-}(aq) + Ca^{2+}(aq) + 2Cl^- \rightarrow CaCO_3(s)$$

A few useful definitions and ideas

Precipitation

Insoluble solid that forms and drops out of solution

Spectator Ions

lons that don't participate in the chemistry

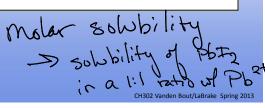
What is soluble?

Many solubility rules Typically K_{sp} is given for insoluble compounds All Na⁺, K⁺, and NO₃- salts are soluble NH_{V}^{+}

MIX SOME SOLUTIONS TOGETHER AND WRITE THE EQUATIONS

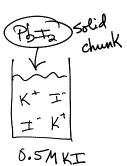
Mix a solution of lead II nitrate with a solution of potassium iodide Fully describe:

POLL: Clicker Question 3


The Ksp of PbI₂ is 1.4×10^{-8} . Predict [Pb²⁺] and [I⁻] in the saturated solution.

A.
$$[Pb^{2+}] = 4.7 \times 10^{-9}$$
 $[I^{-}] = 4.7 \times 10^{-9}$

B.
$$[Pb^{2+}] = 4.7 \times 10^{-9} [I^{-}] = 9.3 \times 10^{-9}$$


C.)
$$[Pb^{2+}] = 1.5 \times 10^{-3} [I^{-}] = 3.0 \times 10^{-3}$$

D.
$$[Pb^{2+}] = 8.4 \times 10^{-5} [I^{-}] = 1.7 \times 10^{-4}$$

H20

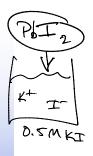
$$T = 3 = 2x$$

 $S = x(2x)^2 = 1.4 \times 10^{-8}$
 $4x^3 = 1.4 \times 10^{-8}$
 $x = 1.5 \times 10^{-3}$

 $T_{2} = \frac{1}{1}Pb^{24} + 2T$ +x + 2x +x + 2x $EPb^{2} = x$ ET = 2x $K_{2} = x(2x)^{2} = 1.4 \times 10^{-8}$ $4x^{3} = 1.4 \times 10^{-8}$ $x = 1.5 \times 10^{-3}$ $y = 3 \times 10^{-3}$ $y = 4 \times 10^{-8}$ $y = 4 \times 10^{-8}$ $y = 1.5 \times 10^{-3}$ $y = 4 \times 10^{-8}$ $y = 4 \times 10^{-8}$

POLL: Clicker Question 4

The Ksp of Pbl_2 is 1.4 x 10^{-8} . Predict $[Pb^{2+}]$ and $[I^-]$ in the saturated solution after the addition of 0.5 moles of KI.


The Ksp of Pbl_2 is 1.4×10^{-8} . Predict $[Pb^{2+}]$ and $[I^-]$ in the saturated solution after the addition of 0.5 moles of KI. The solution described

A.
$$[Pb^{2+}] = 1.5 \times 10^{-3} [I^{-}] = 3.0 \times 10^{-3}$$

B.
$$[Pb^{2+}] = 1.5 \times 10^{-3} [I^{-}] = 1.5 \times 10^{-3}$$

C.)
$$[Pb^{2+}] = 5.6 \times 10^{-8} [I^{-}] = 0.5$$

D.
$$[Pb^{2+}] = 5.6 \times 10^{-8} [I^{-}] = 0.25$$

$$\begin{array}{c} K_{5p} = \left[pb^{24} \right] \left[\overline{I} \right]^{2} \\ R pb \overline{I}_{2} \longrightarrow Pb^{24} + 2 \overline{I} \\ \varnothing \qquad 0.5 \\ + \times \qquad + 2 \times \\ + \times \qquad 0.5 + 2 \times \end{array}$$

CH302 Vanden Bout/LaBrake Spring 20

Reaction Quotient, Q

Q is the value of the ion product at any point in a process, not necessarily at the equilibrium ion concentrations.

Q is useful, because you can compare it to the value of K to decide if a precipitate will form

Q > K, precipitates

Q < K all is single to the no precipitate

Ksp = $\times (0.5+2x)^2 = 1.4 \times 10^{-8}$ in common very small $\times 4.0.5$ ion effect so we ignore it! $\times = \times (0.5)^2 = 1.4 \times 10^{-8}$ $\times = 5.6 \times 10^{-8}$ $\times = 5.6 \times 10^{-8}$ $\times = 5.6 \times 10^{-8}$

Qsp=[Pb=7][I-]2 reality

Whatever you

Neve, right you

POLL: Clicker Question 5

Reaction Quotient, Q

AgCl
$$K_{sp} = 1.8 \times 10^{-10}$$

$$Q = 1.8 \times 10^{-6}$$

Will a precipitate form?

A)Yes B.No

Quiz: Clicker Question 6

Mix 1 liter of 0.2 molar of the lead salt with 1 liter of 0.2 molar of the iodide salt.

What is the value of Q_{sp} and will a precipitate form?

A. $Q_{sp} = 1.4 \times 10^{-8}$; no

B. $Q_{sp} = 1.0 \times 10^{-3}$; no

 $(C.) Q_{sp} = 1.0 \times 10^{-3}$; yes

D. Q_{sp} = 4.0 x 10⁻³ ; yes

ill a precipitate form? $Q = [Pb^{2+}][T] - 2$ Concentrations $[Pb^{2+}] = 0.1M$ [T] = 0.1Mfrom the given problem given

CH302 Vanden Bout/LaBrake Spring 2013

Quiz: Clicker Question 7

What is the mass of the PbI₂ that was precipitated?

A. 461 g Pbl₂

B. 46.1 g Pbl₂

C. 92.2 g PbI₂

D. Impossible to tell because equilibrium

Assume 100% complete Pb2+ + 2I->>PbI,

0.2 moles 0.2 moles (0.1 M, 2L) (0.1 M, 2L)

Limiting Reactant?

I - (need 2x as much)

Try it on your ran

Have 0.1 moles Pb2+

very little I will dissolve back

CH302 Vanden Bout/LaBrake Spring 2013

Quiz: Clicker Question 8

What concentration will the lead ion need to be dropped to to prevent precipitation?

A. 7.0 X 10⁻⁹ M

B. 7.0 X 10⁻⁸ M

C. 1.4 X 10⁻¹⁰ M

D. 1.4 x 10⁻⁶ M

CH302 Vanden Bout/LaBrake Spring 2013

Temperature Dependence of Solubility –

increasing

Solubility Increases with T for ENDOTHERMIC solutions because makes K_{sp} bigger

increasing

Solubility Decreases with Υ for EXOTHERMIC solutions because makes K_{sp} smaller

Ksp changes we temperature

DEMONSTRATE

Solubility Increases with T for ENDOTHERMIC solutions because makes $K_{\rm sp}$ bigger SUPER SATURATED SOLUTION

METASTABLE SOLUTION

CH302 Vanden Bout/LaBrake Spring 2013

What did we learn today?

Solubility is an equilibrium condition.

Determine the solubility of an insoluble salt in the presence of a common ion.

Q is the reaction quotient and indicates the extent of the reaction.

CH302 Vanden Bout/LaBrake Spring 2013

Learning Outcomes

Calculate solubilities in the presence of a common ion.

Given concentrations of specific ions, predict if a precipitate will form (amount or concentration) using the concept of the reaction quotient, Q.