Unit4Day5-LaBrake

Monday, November 18, 2013 3:25 PM

> Vanden Bout/LaBrake/Crawford CH301 The 2nd Law of Thermodynamics Entropy, continued UNIT 4 Day 5

> > CH301 Vanden Bout/LaBrake Fall 2013

Unit4Day5-LaBrake Page 1

What are we going to learn today?

Second & Third Law of Thermodynamics

Quantify change in Entropy

CH301 Vanden Bout/LaBrake Fall 2013

QUIZ: iClicker Question 1

Which of the following has the highest positional probability? most microstates

a) 1 mole N₂ gas at 1 atm (b) 1 mole N₂ gas at .001 atm c) No difference $PV = P_2 V_2$ $PV = P_2 V_2$

CH301 Vanden Bout/LaBrake Fall 2013

QUIZ: iClicker Question 2

Which of the following has the higher entropy?

a) 1 mole N₂ gas at 1 atm b) 1 mole N₂ gas at .001 atm c) No difference

QUIZ: iClicker Question 3

Predict sign for the for ΔS_{sys} for sugar dissolving in water.

Sugar twelv -> Sugar dissolved

b)+ c) No difference

<u>a)</u> -

CH301 Vanden Bout/LaBrake Fall 2013

QUIZ: iClicker Question 4

Predict the sign for the for ΔS_{sys} for iodine vapor condensing on a cold surface.

a) b) + c) No difference

DStofel=

Entropy of the Surroundings

We typically define heat from the perspective of the system. Therefore, when we look at changes for the surroundings, we see the relationship is $\sqrt{2}$

Entropy and Temperature $\Delta S = \frac{q_{rev}}{T}$ $dS = \frac{dq}{T}$ $dS = \frac{CdT}{T}$ $d\int S = C \int \frac{dT}{T}$ $d\int S = C \int \frac{dT}{T}$ $\Delta S = C \ln \frac{T_f}{T_i}$ CH30 Vanden Bout/LaBrake Fall 2013

Entropy for a Phase Change

During a phase change, the heat is the reversible heat and the temperature is constant

"trans" – a phase transition (i.e. vaporization, melting)

$$\Delta S_{trans} = \frac{q_{rev}}{T} = \frac{\Delta H_{trans}}{T_{trans}} \quad \checkmark$$

CH301 Vanden Bout/LaBrake Fall 2013

Entropy for a Chemical Change

During a chemical change, the heat is NOT the reversible heat and the temperature is constant

We need to be able to find the entropy of a substance

CH301 Vanden Bout/LaBrake Fall 2013

The Third Law of Thermodynamics

The entropies of all perfect crystals approach zero when the absolute temperature approaches zero.

$$\overline{S = k \ln \Omega} = k \ln 1 = k(0) = 0$$

We can then use entropy change from temperature change and phase change to find the entropy of any substance at any temperature

Absolute Entropies

Substance	S_{m}°	Substance	$S_{\rm m}^{\circ}$	Substance	$S_{\rm m}^{\circ}$
Gases ammonia, NH ₃ carbon dioxide.	(192.4)	Liquids benzene, C ₆ H ₆ ethanol.	173.3	Solids calcium oxide, CaO calcium carbonate.	39.8
CO ₂	213.7	C ₂ H ₅ OH	160.7	CaCO ₃ [†]	92.9
hydrogen, H ₂ nitrogen, N ₂	130.7 191.6	water, H ₂ O	69.9	diamond, C graphite, C	2.4
oxygen, O,	205.1			lead, Pb	64.8

NOTE: This is not the same as enthalpy of formation. All elements in their standard states have values

Entropy				
What affects the entropy of the system?				
Volume Change - only qualitative $\Delta S_{ii} = \frac{4}{T}$				
Phase Change	$\Delta S_{trans} = \frac{\Delta H_{trans}}{T_{trans}}$			
Temperature Change	$\Delta S = C ln \frac{T_f}{T_i}$			
Chemistry	$\Delta S_r^\circ = \sum n S_{produ}^\circ$	$ucts - \sum nS_{reactants}^{\circ}$		

CH301 Vanden Bout/LaBrake Fall 2013

Activity

Please open your course pack to page 109 Thermo Unit- Entropy of Physical and Chemical Changes

QUIZ: iClicker Question 5

Given that $\Delta H_{fus}^{\circ} = 6.02 \text{ kJ mol}^{-1}$ and that the heat capacity for water is 4.184 J g⁻¹ °C⁻¹. How much heat flows into the system for this process?

a.	12 kJ 16 kJ
С.	3770 kJ
d.	3790 kJ

Determine the same of the sam

QUIZ: iClicker Question 7

Did heat flow into or out of the surroundings during this change?

a. into b. out c. No heat flow

CH301 Vanden Bout/LaBrake Fall 2013

QUIZ: iClicker Question 8

What is the entropy change for the surroundings?

QUIZ: iClicker Question 9

What is the total change in entropy per mole of solid ice that melts under these conditions?

a. -55 J/K mol
b. 55 J/K mol
c. -2.1 J/K mol
d) 2.1 J/K mol
e. 0 J/K mol

DS = DS + DSur tuke Syr DS = 4,25 tuke K

CH301 Vanden Bout/LaBrake Fall 2013

$$AS_{rxn} = \sum_{n} S_{p} - \sum_{n} S_{p}$$

$$AS_{rxn} = (70) - (131 \pm 205)$$

$$AS_{rxn} = (70) - (131 \pm 205)$$

$$AS_{rxn} = (103 \text{ J}_{mxd.kk})$$

Learning Outcomes

Calculate change in entropy of a system for physical change at constant temperature and with a change in temperature, and for a chemical change using tabulated standard molar entropy data.

Calculate change in entropy for the surroundings for a physical change and a chemical change.