Unit4Day1-Crawford

Monday, November 04, 2013 5:55 PM

What are we going to learn today?

Chemical and Physical changes are accompanied by changes in energy

Energy moves in the form of **HEAT (q)** and **WORK (w)**

Get a feel for heat and work

Get a feel for energy units

CH301 Vanden Bout/LaBrake Fall 2013

Energy

EVERY change (physical or chemical) is accompanied by a change in energy

The First Law of Thermodynamics

All energy is conserved, it can not be created or destroyed. It is simply transferred from one form to another

POLL: iCLICKER QUESTION 1 When I think of types of energy, I think: KE and PE are the same as heat & work a) PE and KE are the same as heat & work <u>b</u>) (c)PE and KE are the only two forms of energy d) Heat and work are the only two forms of energy KE = Kinetic Energy PE = Potential Energy CH301 Vanden Bout/LaBrake Fall 2013 **Energy Definitions** What is Energy? nos les Potential Energy (PE) energy due to position or composition Kinetic Energy (KE) energy of the motion of an object or particle movement of molecules Units: J CH301 Vanden Bout/LaBrake Fall 2013 **Energy Definitions** How does Energy move? unorganicud Heat (q)

transfer of energy from a hotter body to a colder **WOLLING** body (NOTE: This is **not** temperature)

System and State

A system is the part of the universe on which we want to focus our attention. The surroundings are everything else

The *universe* is the system and the surroundings Universe = system + surroundings

We also describe chemical changes with beginning and end *states*

A change in a chemical reaction is described as $\Delta tate = State_{end} - State_{beginning}$ $\Delta = Final - Inclusion - Inclusio$

Demonstrations Physical Change (doing work) (O215) -> CO219) Physical Change (absorbing *heat*) heat + (O2(5) -> (O2rg) sublimation Chemical Change (releasing heat) 2 CH3 Ottray + 3 Dacq) -> 2 CO2rg

Energy Changes (Burning Fossil Fuels)

Power Plant

 $coal + 0_2 \rightarrow c0_2 + H_20f$

Automobile

Energy Changes (Burning Fossil Fuels) **Power Plant** coal + 02 -> c02 + H2 Officert Automobile gazoline + 02 -> co2 + H20 + heat

CH301 Vanden Bout/LaBrake Fall 2013

Thermodynamics

Chemists care about understanding and quantifying the amount of energy that moves into or out of a system upon a change.

Gummy Bear Demonstration

Kilocalorie (Calorie) – nutritional unit

calorie – the amount of energy it takes to raise the temperature of 1 gram of water 1 degree C.

1 cal = 4.184 J1 bear = 10 Cal = 10,000 calories = 41,184J [10+] of E

CH301 Vanden Bout/LaBrake Fall 2013

Heat (q)

Heat is energy transferred as a result of temperature difference. Temperature is a property that reflects the random motions of the particles in a particular substance.

q is the symbol used to indicate energy changed by receiving or losing heat

9 (J) movement (flow) T [°C, K] static

Work (w)

Sign Notation of w

- + work done **ON** the system **BY** the surroundings
- work done **BY** the system **ON** the surroundings

POLL: iCLICKER QUESTION 2

Today you saw a demonstration in which a lid popped off a container that contained a piece of $CO_{2(s)}$. In this situation:

- Heat was transferred **into** the system, Work was done **by** the system.
- b) Heat was transferred **out** of the system, Work was done **by** the system.
- c) Heat was transferred **into** the system, Work was done **on** the system.
- d) Heat was transferred **out** of the system, Work was done **on** the system.
- e) Heat was not transferred, only Work was done by the system.

POLL: iCLICKER QUESTION 3

Today you saw a demonstration in which a lid popped off a container that contained a piece of $CO_{2(s)}$. In this situation:

CH301 Vanden Bout/LaBrake Fall 2013

POLL: iCLICKER QUESTION 4

The gases in the four cylinders of an automobile engine expand from 0.22 L to 2.2 L during one ignition cycle. Assuming that the gear train maintains a steady pressure of 9.60 atm on the P-9.6 gases, how much work can the engine do in one cycle? 3V=1.1-0.32 $(1 L \bullet atm = 101.325 J)$ W=198L $P = \frac{F}{A}$ W=-POV W=-(9.6)(1.98)(1013)5 atm K J W=-1925J (a) A. 19 J $P = \frac{F}{A}$ B. -19 J Area = AC. 1925 J -1925 J Δh Δh ΔV (a) Initial (b) Final state state CH301 Vanden Bout/LaBrake Fall 2013

Thermodynamics

First Law of Thermodynamics Energy can not be created or destroyed Law of Conservation of Energy Universe = System + Surroundings

Internal Energy (U or E) is the sum of all the energy in a system, that is all the KE and PE in the system at a particular state.

 $\Delta U = q + w$

CH301 Vanden Bout/LaBrake Fall 2013

POLL: iCLICKER QUESTION 5

work is done on it. Calculate ΔU .

POLL: ICLICKER QUESTION 8

The air inside a balloon is heated, allowing for the balloon to fill to its full capacity. The volume of the balloon changes from 4.0×10^6 L to 4.5×10^6 L by the addition of 1.3×10^8 J of energy as heat. Assuming the balloon expands against a constant pressure of (.0 atr), calculate the ΔU for the process. (1 L•atm = 101.325 J) $\Delta V = 4.5 \cdot 10^6 - 4 \cdot 10^6 = 5 \cdot 10^5$ L A. 1.2×10^8 J B. -1.2×10^8 J C. 7.9×10^7 J D. -7.9×10^7 J D. -7.9×10^7 J $\Delta V = q + w = 1.3 \cdot 10^8 + (-5.06 \cdot 10^7)$ $\Delta V = q + w = 1.3 \cdot 10^8 + (-5.06 \cdot 10^7)$ $\Delta V = 7.9 \cdot 10^7$ J CH301 Vanden Bout/LaBrake Fall 2013

State Functions

A property with a value that depends only on the *current* state of the system and is *independent* of the pathway. If the system is changed from one state to another, the change in a state function is independent of how that change was brought about! (E is a state function, w and q are not state functions!)

A property with a value that depends only on the *current* state of the system and is *independent* of the pathway. If the system is changed from one state to another, the change in a state function is independent of how that change was brought about! (E is a state function, w and q are not state functions!)

Definitions from LMs

Extensive Intensive State Function System Surroundings Universe

What have we learned today?

First Law of Thermodynamics: Energy is conserved in universe-Law of Conservation of Energy

 $\Delta U = q + w$

Heat – movement of energy from hotter body to colder body Work – force x distance – $\mathsf{P}\Delta\mathsf{V}$

Sign convention important "-" work done by system "+" work done on the system

CH301 Vanden Bout/LaBrake Fall 2013

Learning Outcomes

Understand the concept of the energy units: calorie, kilocalorie and kilojoule

Understand the concept of internal energy, heat and work

State and use the equation for change in internal energy, ΔU

Understand all sign conventions in for all the thermodynamic concepts

Calculate w for expansion or compression against a constant pressure.