Unit3Day5-Crawford

Wednesday, October 23, 2013 2:58 PM

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

What are we going to learn today?

Use VSEPR, VB & MO to get a better picture of POLAR and NONPOLAR MOLECULES

Recognize different molecules have different physical properties

Classify Intermolecular Forces (IMF)

CH302 Vanden Bout/LaBrake Fall 2013

QUIZ: iClicker Question 1

Chemists use a localized electron theory and a delocalized electron theory to help predict and explain bonding in molecules, these models are referred to respectively as:

- a) VSEPR, VB
- b) VB, VSEPR
- c) VB, MO
- d) MO, VB
- e) VSEPR, MO

COMBINE VB and MO THEORIES

COMBINE VB and MO THEORIES

Visualize Ethanol

We use VSEPR and VB to get visual image

We predict polarity just from the ball and stick model

Chemical Composition & Shape

What are the Physical Properties?

OntoDays

Unit3Day5-Crawford Page 4

Physical Properties

What dominates the interaction in condensed phases?

What are these forces? How are they classified?

Define Intermolecular Forces (IMF).

NOTE: Remember Tape, Charged Rods and Liquids

Unit3Day5-Crawford Page 6

The dominate force in chemistry is **Coulombic** $E = \frac{q_1 q_2}{4\epsilon_0 \pi r} \quad E \in \mathcal{A}_{distance}$

Intermolecular Forces

The dominate force in chemistry is **Coulombic**

The boiling point of NaCl is 1413 °C. Why is it *so* high?

Qualify the word "intermolecular"

Intermolecular Forces

The molecule is in a condensed phase, but not ionic

A molecular condensed phase is a molecular liquid or a molecular solid

"PARTICLE IS A MOLECULE"

Intermolecular Forces: Induced Dipole-Induced Dipole

This type of IMF goes by several different names:

Induced dipole – Induced dipole

✓ Dispersion Forces

London^{Unit}³Day₅-Crawford Page 10

Consider the following alkane data.

	Alkane	MW [g mol ⁻¹]	BP [°C]			
	Methane	16	-161			
	Ethane	30	-88.7			
	Propane	44	-42.1			
	Butane	58	-0.5			
	Pentane	72	36.1			
- alkane	Hexane	86	68.7			
A molecule with a MW of 80 g mol ⁻¹ will be a at room temperature.						
A. Solid	E	B. Liquid	I	C. Gas		
			CH302 Vande	en Bout/LaBrake Fall 2013		

Poll: iClicker Question 4

Now consider an array of atoms and molecules					
	Alkane	MW [g mol ⁻¹]	BP [°C]		
	Helium	4	-268.9		
	Krypton	83	-153.2		
	Propane	44	-42.1		
	CCl ₄	154	77		
	Octane	114	126		
The IMF strength is dependent on					
A. MW	B. Shape	c C _{nit3Da}	larizability	age 1 P. B&C	

Polarizability

Induced Dipole-Induced Dipole forces exist in **ALL** condensed substances

Strength depends on **polarizability**

Element	Freezing Point (°C)
Helium*	-269.7
Neon	-248.6
Argon	-189.4
Krypton	-157.3
Xenon	-111.9

The BP of Sn hydride less than the BP of the Te hydride because: SnHu Te H_2

a) The Sn compound has a larger dipole

The BP of S hydride less than the BP of the Te hydride because:

- a) The S compound has a larger dipole
- b) The S compound has a smaller dipole
- <u>c</u>) The S compound is more polarizable
- (d) The S compound is less polarizable
- e) The S compound has more friends

BP does not seem to follow the trend for which period?

Intermolecular Forces: Dipole-Dipole

A special type of dipole-dipole forces is particularly strong, called **HYDROGEN BONDING**

Occurs in compounds with a H bound directly to F, N or O

Strength depends on distance and dipole moment, where a big dipole indicates a closer distance

The BP of O hydride is higher than the BP of the Te hydride because:

a) The O compound has a larger dipole

- b) The O compound has a smaller dipole
- c) The O compound is more polarizable
- d) The O compound is less polarizable
- e) The O compound has more hydrogen bonding

CH302 Vanden Bout/LaBrake Fall 2013

Consider the following molecules.

Intermolecular Forces

There are also IMF between different "types" of compounds

Can you think of any examples of the following?

Ion – Dipole

Dipole – Induced dipole

CH302 Vanden Bout/LaBrake Fall 2013

Intermolecular Forces

Strength Varies with TYPE

Type of interaction	Typical energy (kJ⋅mol ⁻¹)	Interacting species
ion-ion	250	ions only
ion-dipole	15	ions and polar molecules
dipole-dipole	2	stationary polar molecules
	0.3	rotating polar molecules
dipole-induced dipole	2	at least one molecule must be polar
London (dispersion) [†]	2	all types of molecules
hydrogen bonding	20	molecules containing N, O, F; the
		link is a shared H atom

What have we learned today?

PHYSICAL PROPERTIES DEPEND ON COMPOSITION & SHAPE OF COMPOUND

CLASSIFY INTERMOLECULAR FORCES ION-ION vs. DIPOLE-DIPOLE vs. INDUCED DIPOLE – INDUCED DIPOLE

PREDICT WHAT TYPE OF IMFs EXIST FOR A PARTICULAR COMPOUND

CH302 Vanden Bout/LaBrake Fall 2013

Learning Outcomes

Define the three major types of intermolecular forces (IMF) discussed in class: dipole-dipole, H-bonding, and dispersion (London, van der Waals, induced dipole-induced dipole, instantaneous dipole-instantaneous dipole)

Explain how molecular size and shape affect the magnitude of the dispersion forces