CH301 Fall 2013
 Name:____KEY_____

 XXX (Professor Name)
 UT EID:______

 EXAM 4
 VERSION #: ______

 25 POINTS
 VERSION #: ______

Questions on front and back. Show work for partial credit. Your work and answers must fit in the boxes provided for each question. *Responses outside the boxes will not be graded.*

Consider the combustion of **one mole of hydrazine** (N_2H_4) at 1 atm and 298K.

 $N_2H_4(I) + 3 O_2(g) \rightarrow 2 NO_2(g) + 2 H_2O(I)$

1. (3 points) Calculate the change in the standard reaction entropy for the system.

$$\begin{split} &\Delta S^{\circ}_{rxn} = \sum n S^{\circ}_{products} - \sum n S^{\circ}_{reactants} \\ &\Delta S^{\circ}_{rxn} = [2(S^{\circ}_{H20(l)}) + 2(S^{\circ}_{NO2(g)})] - [1(S^{\circ}_{N2H4(l)}) + 3(S^{\circ}_{O2(g)})] \\ &\Delta S^{\circ}_{rxn} = [2(70J/molK) + 2(240J/molK)] - [1(12J/molK) + 3(205J/molK)] \\ &\Delta S^{\circ}_{rxn} = [620J/molK] - [627J/molK] \\ &\Delta S^{\circ}_{rxn} = -7 \ J/K \ (for 1 mol of this reaction, which is what we have when we combust 1 mol hydrazine) \\ &(OR \ \Delta S^{\circ}_{rxn} = -0.007 \ kJ/K) \end{split}$$

2. (3 points) Calculate the change in the standard reaction enthalpy for the system.

$$\begin{split} & \Delta H_{rxn}^{\circ} = \sum n \Delta H_{f}^{\circ}_{products} - \sum n \Delta H_{f}^{\circ}_{reactants} \\ & \Delta H_{rxn}^{\circ} = [2(\Delta H_{f}^{\circ}_{H20(l)}) + 2(\Delta H_{f}^{\circ}_{NO2(g)})] - [1(\Delta H_{f}^{\circ}_{N2H4(l)}) + 3(\Delta H_{f}^{\circ}_{O2(g)})] \\ & \Delta H_{rxn}^{\circ} = [2(-286 \text{kJ/mol}) + 2(33 \text{kJ/mol})] - [1(50 \text{kJ/mol}) + 3(0 \text{kJ/mol})] \\ & \Delta H_{rxn}^{\circ} = [-506 \text{kJ/mol}] - [50 \text{kJ/mol}] \\ & \Delta H_{rxn}^{\circ} = -556 \text{ kJ (for 1 mol of this reaction, which is what we have when we combust 1 mol hydrazine) \\ \hline Total of 3 \text{ pts:} \\ +1 \text{ pts for correct equation/set-up} \\ +2 \text{ points for correct answer} (or +3 \text{ pts for correct answer with some articulate work shown)} \end{split}$$

3. (3 points) Calculate the change in standard Gibbs' Free Energy for the system

```
\begin{array}{l} \Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T(\Delta S^{\circ}_{rxn}) \\ \Delta G^{\circ}_{rxn} = -556 \ kJ - (298k)(-0.007 \ kJ/K) \\ \Delta G^{\circ}_{rxn} = -533.914 \ kJ \end{array}
Total of 3 pts:
+1 pts for correct equation/set-up
+2 points for correct answer using the numbers provided from #1 and #2
```

(or +3 pts for correct answer with some articulate work shown)

4. (3 points) At what *temperature* will this reaction become spontaneous (or non-spontaneous)? Will the reaction be spontaneous above or below this temperature?

 $\begin{array}{l} 0 = \Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T(\Delta S^{\circ}_{rxn}) \\ 0 = \Delta H^{\circ}_{rxn} - T(\Delta S^{\circ}_{rxn}) \\ 0 = -556 \ kJ - (T)(-0.007 \ kJ/K) \\ T = (-556 \ kJ) \div (-0.007 \ kJ/K) \\ T = 79,428.57 \ K \end{array}$ The reaction will be spontaneous below this temperature.
Total of 3 pts:
+1 pts for correct equation/set-up
+1 points for correct answer using the numbers provided from #1 and #2
+1 point for correct analysis of spontaneity
(or +3 pts for correct answer with some articulate work shown and correct analysis of spontaneity)

5. (3 points) Will the sign on work be positive, negative or zero? Please explain your answer.

It will be positive. There are fewer gas moles in the products than in the reactants. The external pressure will do work ON the system and compress the system. Work = $-\Delta n_{gas}RT = -(2moles - 3moles)(8.314J/molK)(298K) = +2,477.57 J$ Total of 3 pts: +1 pts for correct sign +2 pts for correct, logical explanation via words or through math

6. (10 points) Match the following terms with the appropriate definition (by placing the corresponding letter in the provided 'blank').

a. Enthalpy	b. Ent	ropy	c. First Law	of Thermodynamics	d. Heat	t e. Work
f. Internal En	ergy	g. Hea	at Capacity	h. Specific Heat Cap	pacity	i. Potential Energy
j. Kinetic Ene	rgy					

Total of 10 pts: +1 pt for each response

_ i.___ energy of a system based on composition and position

_j.__ energy of motion

 $\rightarrow \rightarrow$ Questions on front and back $\rightarrow \rightarrow$

_b.__ energy dispersed relative to the temperature

_h.__ intensive measure of heat flow relative to temperature change

_a.__ heat flow at constant pressure

_g.__ extensive measure of heat flow relative to temperature change

_ f.___ total energy of a system

_d.__ transfer of energy from a hot body to a cold body

_ c.___ conservation of energy

_ e.__ organized molecular motion across a distance

 $\rightarrow \rightarrow$ Questions on front and back $\rightarrow \rightarrow$