This print-out should have 15 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

Mlib 002531
 $001 \quad 10.0$ points

The measurement $3.2 \times 10^{-3} \mathrm{~g}$ could also be written as

1. 3.2 pg .
2. 3.2 mg . correct
3. 3.2 kg .
4. None of these
5. 3.2 g .

Explanation:

mg refers to 10^{-3}.

ACAMP FE 0007
 $002 \quad 10.0$ points

The mole concept is important in chemistry because

1. it establishes a standard for reaction stoichiometry.
2. atoms and molecules are very small and the mole concept allows us to count atoms and molecules by weighing macroscopic amounts of material. correct
3. it provides a universally accepted standard for mass.
4. it allows us to distinguish between elements and compounds.
5. it explains the properties of gases.

Explanation:

The mole concept is important in chemistry because we know that if we weight 63.55 g of pure copper, then we have about a mole of copper atoms.

Mlib 010529
$003 \quad 10.0$ points
How many atoms of hydrogen are contained in 1 mole of methane $\left(\mathrm{CH}_{4}\right)$?

1. 6.02×10^{23} atoms
2. The correct answer is not given.
3. 3.01×10^{24} atoms
4. 2.41×10^{24} atoms correct
5. 4 atoms

Explanation:

$n=1 \mathrm{~mol}$
Each methane molecule contains 4 hydrogen atoms. There are Avogadro's number of methane molecules in one mole of methane molecules:

$$
\begin{aligned}
n_{\mathrm{H}}= & 1 \mathrm{~mol} \mathrm{CH}_{4} \\
& \times \frac{6.02 \times 10^{23} \mathrm{molec} \mathrm{CH}_{4}}{1 \mathrm{~mol} \mathrm{CH}_{4}} \\
& \times \frac{4 \mathrm{H} \text { atoms }}{1 \mathrm{molec}^{\mathrm{CH}_{4}}} \\
= & 2.41 \times 10^{24} \mathrm{H} \text { atoms }
\end{aligned}
$$

Counting Hs 00410.0 points

Which has the greatest number of hydrogen atoms?

1. 5 g of an unknown compound
2. 10^{20} hydrogen atoms
3. 100 g of a substance that is $2 \% \mathrm{H}$ by mass
4. 100 g of water
5. 20 g of hydrogen gas correct

Explanation:

$10^{20} \mathrm{H}$ atoms is much less than 1 mole of H atoms. 100 g of water is 5.56 moles of water which would have 11.12 moles of H atoms. 5 g of an unknown substance even if it was pure hydrogen could only be 5 moles of H atoms.

20 g of hydrogen gas is 10 moles of H_{2} which is 20 moles of H atoms. 100 g of a substance that is 2% by mass hydrogen has 2 g of Hydrogen which is 2 moles. 20 moles of H atoms is the greatest number of atoms.

Mlib 013075
 $005 \quad 10.0$ points

What is the coefficient for $\mathrm{H}_{2} \mathrm{O}$ when the equation
$? \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+? \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow$
$? \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+? \mathrm{H}_{2} \mathrm{O}(\ell)$
is balanced using the smallest possible integers?

1. 2
2. 6 correct
3. 3
4. 8
5. 4

Explanation:

A balanced equation has the same number of each kind of atom on each side of the equation. We find the number of each kind of atom using equation coefficients and composition stoichiometry. For example, we find there are 12 H atoms on the product side:

$$
? \mathrm{H} \text { atoms }=6 \mathrm{H}_{2} \mathrm{O} \times \frac{2 \mathrm{H}}{\mathrm{H}_{2} \mathrm{O}}=12 \mathrm{H}
$$

The balanced equation is

$$
3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow_{\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O},}
$$

and the coefficient of $\mathrm{H}_{2} \mathrm{O}$ is 6 .

Mlib 080075
$006 \quad 10.0$ points
When aluminum metal is heated with manganese oxide, the following reaction occurs.

$$
\mathrm{Al}+\mathrm{MnO}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Mn}
$$

Balance this equation and indicate the sum of the coefficients for all the species.

1. ten
2. fifteen
3. twelve correct
4. seven

Explanation:

A balanced equation has the same number of each kind of atom on both sides of the equation. We find the number of each kind of atom using equation coefficients and composition stoichiometry. For example, we find there are 6 O atoms on the reactant side:

$$
? \mathrm{O} \text { atoms }=3 \mathrm{MnO}_{2} \times \frac{2 \mathrm{O}}{1 \mathrm{MnO}_{2}}=6 \mathrm{O}
$$

The balanced equation is

$$
4 \mathrm{Al}+3 \mathrm{MnO}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{Mn}
$$

and has $4 \mathrm{Al}, 3 \mathrm{Mn}$ and 6 O atoms on each side.
? sum coefficients $=4+3+2+3=12$

Balance Equation 105 00710.0 points

When the equation

$$
? \mathrm{PbS}+? \mathrm{O}_{2} \rightarrow ? \mathrm{PbO}+? \mathrm{SO}_{2}
$$

is balanced, the coefficients are

1. $2 ; 6 ; 4 ; 4$
2. 2; 2; 1; 2
3. $1 ; 2 ; 1 ; 1$
4. $4 ; 12 ; 4 ; 4$
5. 2; 3; 2; 2 correct

Explanation:

There are 2 oxygens on the left and 3 on the right, so at least six oxygens are needed:

$$
? \mathrm{PbS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}
$$

Now there are 2 each of Pb and S on the right, so the balanced equation is

$$
2 \mathrm{PbS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}
$$

Balance Equation 126 00810.0 points

Balance the equation
$? \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+? \mathrm{NaOH} \rightarrow$

$$
? \mathrm{Al}(\mathrm{OH})_{3}+? \mathrm{Na}_{2} \mathrm{SO}_{4},
$$

using the smallest possible integers. What is the sum of the coefficients in the balanced equation?

1. ten
2. eight
3. fourteen
4. twelve correct
5. six

Explanation:

The balanced chemical equation is

$$
1 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{NaOH} \rightarrow
$$

$$
2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}
$$

which gives $2 \mathrm{Al}, 3 \mathrm{SO}_{4}, 6 \mathrm{Na}$, and $6 \mathrm{OH}^{-}$ on both sides of the equation. The sum of coefficients is $1+6+2+3=12$.

Brodbelt 20044
 00910.0 points

Which one has the greatest number of atoms?

1. All have the same number of atoms
2. 3.05 moles of argon
3. 3.05 moles of water
4. 3.05 moles of CH_{4} correct
5. 3.05 moles of helium

Explanation:

For 3.05 moles of water:

$$
\begin{aligned}
? \text { atoms }= & 3.05 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{6.02 \times 10^{23} \mathrm{molec}}{1 \mathrm{~mol}} \\
& \times \frac{3 \text { atoms }}{1 \text { molecule }} \\
= & 5.51 \times 10^{24} \text { atoms }
\end{aligned}
$$

For 3.05 moles of CH_{4} :

$$
\begin{aligned}
? \text { atoms }= & 3.05 \mathrm{~mol} \mathrm{CH}_{4} \times \frac{6.02 \times 10^{23} \mathrm{molec}}{1 \mathrm{~mol}} \\
& \times \frac{5 \text { atoms }}{1 \text { molecule }} \\
= & 9.18 \times 10^{24} \text { atoms }
\end{aligned}
$$

For 3.05 moles of helium:

$$
\begin{aligned}
? \text { atoms } & =3.05 \mathrm{~mol} \mathrm{He} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}} \\
& =1.84 \times 10^{24} \text { atoms }
\end{aligned}
$$

For 3.5 moles of argon:

$$
\begin{aligned}
? \text { atoms } & =3.05 \mathrm{~mol} \mathrm{Ar} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}} \\
& =1.84 \times 10^{24} \text { atoms }
\end{aligned}
$$

Mlib 015027 $010 \quad 10.0$ points

If 100.0 grams of copper (Cu) completely reacts with 25.0 grams of oxygen, how much copper(II) oxide (CuO) will form from 140.0 grams of copper and excess oxygen? (Note: CuO is the only product of this reaction.)

1. 160.0 g
2. 175.0 g correct
3. 150.0 g
4. 200.0 g
5. 35.0 g

Explanation:
$\mathrm{m}_{\mathrm{Cu}, \mathrm{ini}}=100.0 \mathrm{~g}$

$$
\mathrm{m}_{\mathrm{O}_{2}}=25.0 \mathrm{~g}
$$

$\mathrm{m}_{\mathrm{Cu}, \mathrm{fin}}=140.0 \mathrm{~g}$
If 100 g copper and 25 g oxygen react completely with each other, there must be 125 g of product formed (law of conservation of mass). This product is CuO .

Now we have a ratio: for every 100 g of Cu reacted, 125 g of CuO will be produced (assuming there is enough oxygen). We use this ratio to find the mass of CuO that could be formed from 140 g of Cu and excess oxygen. We set our known ratio ($100 \mathrm{~g} \mathrm{Cu}: 125 \mathrm{~g}$ CuO) equal to our experimental ratio (140 g $\mathrm{Cu}: x \mathrm{~g} \mathrm{CuO})$ and solve for the unknown:

$$
\begin{aligned}
\frac{100 \mathrm{~g} \mathrm{Cu}}{125 \mathrm{~g} \mathrm{CuO}} & =\frac{140 \mathrm{~g} \mathrm{Cu}}{x} \\
x & =\frac{(140 \mathrm{~g} \mathrm{Cu})(125 \mathrm{~g} \mathrm{CuO})}{100 \mathrm{~g} \mathrm{Cu}} \\
& =175 \mathrm{~g} \mathrm{CuO}
\end{aligned}
$$

Mlib 015009
 $011 \quad 10.0$ points

Consider the reaction

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

If 12.5 g of iron(III) oxide (rust) are produced from 8.74 g of iron, how much oxygen gas is needed for this reaction?

1. 8.74 g
2. 21.2 g

3. 3.74 g correct

4. 12.5 g

5. 7.5 g

Explanation:

$\mathrm{m}_{\text {iron }}=8.74 \mathrm{~g}$

$$
\mathrm{m}_{\text {oxide }}=12.5 \mathrm{~g}
$$

The balanced equation for the reaction tells us that 4 mol Fe reacts with $3 \mathrm{~mol} \mathrm{O}_{2}$ to produce $2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$. We have two possible starting points. We know $12.5 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$ was produced and that 8.74 g Fe was present at the start of the reaction.

Choosing the 12.5 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ to start with, first we convert to moles using the molar mass:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{Fe} & \mathrm{O}_{3}= \\
& 12.5 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3} \\
& \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{159.7 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}} \\
= & 0.0783 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
\end{aligned}
$$

Now we use the mole ratio from the balanced equation to find moles O_{2} needed to produce $0.0783 \mathrm{~mol} \mathrm{Fe} 2 \mathrm{O}_{3}$.

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{O}_{2}= & 0.0783 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \\
& \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}} \\
= & 0.117 \mathrm{~mol} \mathrm{O}_{2}
\end{aligned}
$$

We convert from moles to grams:

$$
\begin{aligned}
? \mathrm{~g} \mathrm{O}_{2} & =0.117 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}} \\
& =3.744 \mathrm{~g} \mathrm{O}_{2}
\end{aligned}
$$

Starting with 8.74 g Fe and following the same steps results in the same numerical answer.

Msci 021236 $012 \quad 10.0$ points

Upon heating, potassium chlorate produces potassium chloride and oxygen:

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

What mass of oxygen $\left(\mathrm{O}_{2}\right)$ would be produced upon thermal decomposition of 25 g of potassium chlorate $\left(\mathrm{KClO}_{3}\right.$ with MW 122.5 $\mathrm{g} / \mathrm{mol})$?

$$
1.6 .5 \mathrm{~g}
$$

2. 9.8 g correct

3. 4.4 g
4. 4.9 g
5. 3.3 g

Explanation:

$\mathrm{m}_{\mathrm{KClO}_{3}}=25.0 \mathrm{~g} \quad \mathrm{MW}_{\mathrm{KClO}_{3}}=122.5 \mathrm{~g} / \mathrm{mol}$
The balanced equation for the reaction indicates that $3 \mathrm{~mol} \mathrm{O}_{2}$ are produced for every $2 \mathrm{~mol}_{\mathrm{KClO}}^{3}$ reacted. First we calculate the moles KClO_{3} present:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{KClO}_{3}= & 25 \mathrm{~g} \mathrm{KClO}_{3} \\
& \times \frac{1 \mathrm{~mol} \mathrm{KClO}_{3}}{122.55 \mathrm{~g} \mathrm{KClO}_{3}} \\
= & 0.204 \mathrm{~mol} \mathrm{KClO}_{3}
\end{aligned}
$$

Now we use the mole-to-mole ratio from the balanced equation to find the moles O_{2} that could be produced from this amount of KClO_{3} :

$$
\begin{aligned}
& ? \mathrm{~mol} \mathrm{O}_{2}=0.204 \mathrm{~mol} \mathrm{KClO} 3 \\
& \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{KClO}_{3}} \\
& =0.306 \mathrm{~mol} \mathrm{O}_{2}
\end{aligned}
$$

We convert from moles to grams O_{2} :

$$
\begin{aligned}
? \mathrm{~g} \mathrm{O}_{2} & =0.306 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}} \\
& =9.8 \mathrm{~g} \mathrm{O}_{2}
\end{aligned}
$$

Msci 030307 $013 \quad 10.0$ points
In the reaction

$$
? \mathrm{CO}+? \mathrm{O}_{2} \rightarrow ? \mathrm{CO}_{2}
$$

how much oxygen is required to convert 21 g of CO into CO_{2} ?

1. 42 g
2. 12 g correct
3. 24 g
4.6 g
4. 48 g
5. 21 g

Explanation:

$\mathrm{m}_{\mathrm{CO}}=21 \mathrm{~g}$
The balanced equation for the reaction is

$$
2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}
$$

The coefficients in this equation indicate that 2 mol CO are needed for each mol O_{2} reacted. First we calculate the moles of CO present:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{CO} & =21 \mathrm{~g} \mathrm{CO} \times \frac{1 \mathrm{~mol} \mathrm{CO}}{28 \mathrm{~g} \mathrm{CO}} \\
& =0.75 \mathrm{~mol} \mathrm{CO}
\end{aligned}
$$

Using the mole ratio from the balanced equation, we find the moles O_{2} needed to completely react with 0.75 mol CO:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{O}_{2} & =0.75 \mathrm{~mol} \mathrm{CO} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{CO}} \\
& =0.375 \mathrm{~mol} \mathrm{O}
\end{aligned} 2
$$

We convert from moles to grams O_{2} :

$$
\begin{aligned}
? \mathrm{~g} \mathrm{O}_{2} & =0.375 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}} \\
& =12 \mathrm{~g} \mathrm{O}_{2}
\end{aligned}
$$

Brodbelt 013012
 $014 \quad 10.0$ points

Consider the reaction

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

How much NH_{3} can be produced from the reaction of 74.2 g of N_{2} and 14.0 moles of H_{2} ?

1. 1.26×10^{25} molecules
2. 3.19×10^{24} molecules correct
3. 1.69×10^{25} molecules
4. 1.59×10^{24} molecules
5. 5.62×10^{24} molecules

Explanation:

$\mathrm{m}_{\mathrm{N}_{2}}=74.2 \mathrm{~g}$ $n_{\mathrm{H}_{2}}=14.0 \mathrm{~mol}$
First you must determine the limiting reactant:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{~N}_{2} & =74.2 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28 \mathrm{~g} \mathrm{~N}_{2}} \\
& =2.65 \mathrm{~mol} \mathrm{~N}_{2}
\end{aligned}
$$

According to balanced equation, we need

$$
\frac{3 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}} .
$$

We have

$$
\frac{14.0 \mathrm{~mol} \mathrm{H}_{2}}{2.65 \mathrm{~mol} \mathrm{~N}_{2}}=\frac{5.28 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}
$$

Therefore, H_{2} is an excess and N_{2} is limiting.

$$
\begin{aligned}
? \text { molec } \mathrm{NH}_{3}= & 2.65 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}} \\
& \times \frac{6.022 \times 10^{23} \mathrm{NH}_{3} \mathrm{molec}}{1 \mathrm{~mol} \mathrm{NH}} 33 \mathrm{molec} \\
& =3.19 \times 10^{24} \mathrm{molec} \mathrm{NH}_{3}
\end{aligned}
$$

Limit mccord01x hmwk
 $015 \quad 10.0$ points

For the reaction

$$
? \mathrm{C}_{6} \mathrm{H}_{6}+? \mathrm{O}_{2} \rightarrow ? \mathrm{CO}_{2}+? \mathrm{H}_{2} \mathrm{O}
$$

25.1 grams of $\mathrm{C}_{6} \mathrm{H}_{6}$ are allowed to react with 84.82 grams of O_{2}. How much CO_{2} will be produced by this reaction?

Correct answer: 84.85 grams.

Explanation:

$\mathrm{m}_{\mathrm{C}_{6} \mathrm{H}_{6}}=25.1 \mathrm{~g} \quad \mathrm{~m}_{\mathrm{O}_{2}}=84.82 \mathrm{~g}$
The balanced equation for the reaction is

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

FW of $\mathrm{C}_{6} \mathrm{H}_{6}$ is $78.1118 \mathrm{~g} / \mathrm{mol}$, giving 0.3213 mol $\mathrm{C}_{6} \mathrm{H}_{6}$.
FW of O_{2} is $31.9988 \mathrm{~g} / \mathrm{mol}$, giving 2.651 mol O_{2}.
FW of CO_{2} is $44.0095 \mathrm{~g} / \mathrm{mol}$
$0.3213 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{15 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}}$
$=2.41 \mathrm{~mol} \mathrm{O}{ }_{2}$
which is less than what is actually present. Therefore the limiting reactant must be $\mathrm{C}_{6} \mathrm{H}_{6}$.
$0.3213 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{12 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}}$

$$
\times \frac{44.0095 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=84.85 \mathrm{~g} \mathrm{CO}_{2}
$$

