

NI	
Name:	

Thermodynamics Unit - RAQ Consider the following CHEMICAL CHANGE:

Acetylene (C_2H_2) combusts in oxygen to form carbon dioxide and water.

- 1. Estimate the enthalpy of combustion of acetylene using bond energies data.
- 2. Calculate the enthalpy of combustion of one mole of C_2H_2 using heats of formation data found on the course website using your personal wireless device.

Single Bond Energies (kJ/mol of bonds)									
	Η	\mathbf{C}	N	O	\mathbf{S}	F	Cl		
H	436								
\mathbf{C}	413	346							
N	391	305	163						
O	463	358	201	146					
\mathbf{S}	347	272	_	_	226				
\mathbf{F}	565	485	283	190	284	155			

192

Cl 432

339

218

255

242

253

- 3. Calculate the change in entropy for this reaction using standard molar entropy data found on the course website.
- 4. Calculate the change in Gibbs free energy for this reaction. Is there ever a temperature where this reaction would be non-spontaneous? If so, what is that temperature? If not, why?
- 5. Imagine this reaction was run at constant pressure and temperature, what is the work for this process (combustion of $4 \text{ g C}_2\text{H}_2$)?
- 6. At constant pressure, use the change in enthalpy and the work to find the change in internal energy for this process (combustion of 4 g C_2H_2)?
- 7. 4 g of acetylene was combusted in a bomb calorimeter that had a heat capacity of $3.51 \, kJ/C$ for the device and contained 2000 g of water (C = $4.184 \, J/g$ C) to absorb the heat as well. What is the expected temperature change in such a calorimeter given the complete combustion of the 4 g of the fuel.

Consider the following PHYSICAL CHANGE:

$$N_2(liq,77K) \longrightarrow N_2(gas,298K)$$

and the following THERMODYNAMIC DATA for N₂:

$$\Delta H_{vaporization}^0 = 5.56 \text{ kJ mol}^{-1}$$

$$C(N_{2gas}) = 29.1 \text{ J K}^{-1} \text{mol}^{-1}$$

$$T_{\rm b} = 77 \; {\rm K}$$

$$T_{surr} = 298 \text{ K}$$

- 1. How much heat is absorbed during this change given 4 moles of N₂?
- 2. What is the work for this process (assuming the initial volume of the liquid is zero?)
- 3. What is the change in internal energy for this process?
- 4. What is the change in enthalpy for this process?
- 5. What is the change in entropy of the system for this process?
- 6. What is the change in entropy of the surrounding for this process?
- 7. What is the total change in entropy (change in entropy of universe) for this process?
- 8. Does the thermodynamic calculation predict the observation that this process is spontaneous?