Name:_____ | Molecular
Formula | Lewis Structure | Bond Angle
(calculated) | # of
Bonding
Regions
(central
atom) | # Nonbonding
Regions
(central atom) | #
Total
Electron
Dense
Regions | Approx.
Bond
Angles | |---------------------------------|--|------------------------------|---|---|--|---------------------------| | CO ₂ | o=c=o | ∠0C0=180° | 2 | 0 | 2 | | | НССН | нс≡сн | ∠HCC=180° | 2 | 0 | 2 | 180° | | H_2CCCH_2 | $H_2C \longrightarrow C \longrightarrow CH_2$ | ∠CCC=180° | 2 | 0 | 2 | | | ClNNCl | : CI—N—N—CI : | ∠ClNN=117.4° | 2 | 1 | 3 | | | (NO ₃)- | | ∠0NO=120° | 3 | 0 | 3 | 120° | | H ₂ CCH ₂ | н н
нс=сн | ∠HCH=121.1° | 3 | 0 | 3 | | | CH ₄ | н

нсн
 | ∠HCH=109.45° | 4 | 0 | 4 | | | CH₃F | H
H
 | ∠HCF=109.45° | 4 | 0 | 4 | | | CH₃Cl | н

н—с—сі:
 | ∠HCF=109.45° | 4 | 0 | 4 | | | CCl ₄ | H
.: 0:
.: 0:
.: 0:
.: 0:
.: 0: | ∠ClCCl=109.45° | 4 | 0 | 4 | 109.5° | | NH_3 | : <u>.</u>
н—n—н
 | ∠HNH=107° | 3 | 1 | 4 | | | NH ₂ F | H
H—N—H

: F: | ∠HNH=106.95°
∠HNF=106.46° | 3 | 1 | 4 | | | H ₂ O | H-O:

 | ∠HOH=104.5° | 2 | 2 | 4 | | ## **IMF Unit - Understanding Shape** STUDY THE DATA TABLE ON BACK AND ANSWER THE FOLLOWING QUESTIONS: - 1. How is the number of bonding regions around the central atom determined? All types of bonds (single, double, triple) count as 1 bonding region. - 2. How is the number of nonbonding regions around the central atom determined? Each set of lone pairs (two electrons = 1 Lone Pair) count as 1 non-bonding region - 3. The bond angles listed on the table can be grouped approximately around what three values? 180°, 120°, 109.5° - 4. What correlation can be made between the values in the last two columns of the table and the groupings identified in question 3? (See edited table) - 2 Regions of electron density TOTAL = 180° - 3 Regions of electron density TOTAL = 120° - 4 Regions of electron density TOTAL = 109.5° - 5. Using information from the data table, sketch a 3 dimensional image of CH_4 , NH_3 and H_2O . Use a word or short phrase to describe the shape you drew. Dashed line = going into the page away from you Heavy triangle = coming out of the page toward you Straight, normal line = in the plane of the page 6. Use the clay and toothpicks to make the molecules in 5. (See class video for a replay) 7. A volunteer will make the electron domains with balloons. Compare the molecular models with the "electron region" model. (See class video for a replay) In short, the electron regions truly fill a lot of space. Name:_____ 8. Compare the electron region geometries of the following molecules: $CH_4,\,NH_3,\,H_2O,\,NO_3^{-1},\,CO_2$