Name:_____

Molecular Formula	Lewis Structure	Bond Angle (calculated)	# of Bonding Regions (central atom)	# Nonbonding Regions (central atom)	# Total Electron Dense Regions	Approx. Bond Angles
CO ₂	o=c=o	∠0C0=180°	2	0	2	
НССН	нс≡сн	∠HCC=180°	2	0	2	180°
H_2CCCH_2	$H_2C \longrightarrow C \longrightarrow CH_2$	∠CCC=180°	2	0	2	
ClNNCl	: CI—N—N—CI :	∠ClNN=117.4°	2	1	3	
(NO ₃)-		∠0NO=120°	3	0	3	120°
H ₂ CCH ₂	н н нс=сн	∠HCH=121.1°	3	0	3	
CH ₄	н нсн 	∠HCH=109.45°	4	0	4	
CH₃F	H H 	∠HCF=109.45°	4	0	4	
CH₃Cl	н н—с—сі: 	∠HCF=109.45°	4	0	4	
CCl ₄	H .: 0: .: 0: .: 0: .: 0: .: 0:	∠ClCCl=109.45°	4	0	4	109.5°
NH_3	: <u>.</u> н—n—н 	∠HNH=107°	3	1	4	
NH ₂ F	H H—N—H : F:	∠HNH=106.95° ∠HNF=106.46°	3	1	4	
H ₂ O	H-O: 	∠HOH=104.5°	2	2	4	

IMF Unit - Understanding Shape

STUDY THE DATA TABLE ON BACK AND ANSWER THE FOLLOWING QUESTIONS:

- 1. How is the number of bonding regions around the central atom determined? All types of bonds (single, double, triple) count as 1 bonding region.
- 2. How is the number of nonbonding regions around the central atom determined? Each set of lone pairs (two electrons = 1 Lone Pair) count as 1 non-bonding region
- 3. The bond angles listed on the table can be grouped approximately around what three values?

180°, 120°, 109.5°

- 4. What correlation can be made between the values in the last two columns of the table and the groupings identified in question 3? (See edited table)
 - 2 Regions of electron density TOTAL = 180°
 - 3 Regions of electron density TOTAL = 120°
 - 4 Regions of electron density TOTAL = 109.5°
- 5. Using information from the data table, sketch a 3 dimensional image of CH_4 , NH_3 and H_2O . Use a word or short phrase to describe the shape you drew.

Dashed line = going into the page away from you Heavy triangle = coming out of the page toward you Straight, normal line = in the plane of the page

6. Use the clay and toothpicks to make the molecules in 5.

(See class video for a replay)

7. A volunteer will make the electron domains with balloons. Compare the molecular models with the "electron region" model.

(See class video for a replay) In short, the electron regions truly fill a lot of space.

Name:_____

8. Compare the electron region geometries of the following molecules: $CH_4,\,NH_3,\,H_2O,\,NO_3^{-1},\,CO_2$